White chick hatchery disease is an emerging disease of broiler chicks with which the virus, chicken astrovirus, has been associated. Adult birds typically show no obvious clinical signs of infection, although some broiler breeder flocks have experienced slight egg drops. Substantial decreases in hatching are experienced over a two-week period, with an increase in mid-to-late embryo deaths, chicks too weak to hatch and pale, runted chicks with high mortality. Chicken astrovirus is an enteric virus, and strains are typically transmitted horizontally within flocks via the faecal-oral route; however, dead-in-shell embryos and weak, pale hatchlings indicate vertical transmission of the strains associated with white chick hatchery disease. Hatch levels are typically restored after two weeks when seroconversion of the hens to chicken astrovirus has occurred. Currently, there are no commercial vaccines available for the virus; therefore, the only means of protection is by good levels of biosecurity. This review aims to outline the current understanding regarding white chick hatchery disease in broiler chick flocks suffering from severe early mortality and increased embryo death in countries worldwide.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8703500 | PMC |
http://dx.doi.org/10.3390/v13122435 | DOI Listing |
Invest Ophthalmol Vis Sci
January 2025
School of Psychology and Public Health, La Trobe University, Melbourne, Australia.
Purpose: Prolonged exposure to broadband light with a short-wavelength (blue) or long-wavelength (orange/red) bias is known to impact eye growth and refraction, but the mechanisms underlying this response are unknown. Thus, the present study investigated the effects of broadband blue and orange lights with well-differentiated spectrums on refractive development and global flash electroretinography (gfERG) measures of retinal function in the chick myopia model.
Methods: Chicks were raised for 4 days with monocular negative lenses, or no lens, under blue, orange, or white light.
Vet Med Sci
January 2025
Faculty of Health Sciences, Department of Nutrition and Dietetics, Karamanoglu Mehmetbey University, Karaman, Turkey.
The objective of this study is to assess the embryological and morphometric development of the chick cerebrum during specific incubation periods. The cerebrums of 24 Babcock White Leghorn chicks, six each from the 10th, 13th, 16th and 21st days of the incubation period, were used in the study. After removing the heads of fixed embryos from the upper edge of the atlas, the brains were taken out of the cranial cavity.
View Article and Find Full Text PDFAntioxidants (Basel)
November 2024
College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
Lighting is crucial for the development of broilers as it affects their growth performance, oxidative stress, and overall health. This study investigates the impact of full-spectrum light, infrared light, and LED white light exposure on the growth performance, oxidative stress markers, and cecal microbiota of medium-growth yellow-feathered broilers. A total of 216 medium-growth yellow-feathered chicks (Yuhuang No.
View Article and Find Full Text PDFPoult Sci
December 2024
Department of Animal Sciences, University of Illinois, Urbana 6180. Electronic address:
The objective was to test the hypothesis that nitrogen-corrected true metabolizable energy (TME), standardized amino acid (AA) digestibility, and apparent ileal P digestibility are not different in soybean expellers produced from high-oil soybeans (SBE-HO) compared with expellers produced from conventional soybeans (SBE-CV). The two soybean expellers contained approximately 46.3 % crude protein (DM basis).
View Article and Find Full Text PDFPoult Sci
November 2024
State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!