The development of a vaccine against congenital human cytomegalovirus (HCMV) infection is a major priority. The pentameric complex (PC) of virion envelope proteins gH, gL, UL128, UL130, and UL131A is a key vaccine target. To determine the importance of immunity to the homologous PC encoded by guinea pig cytomegalovirus (GPCMV) in preventing congenital CMV, PC-intact and PC-deficient live-attenuated vaccines were generated and directly compared for immunogenicity and efficacy against vertical transmission in a vertical transmission model. A virulent PC-intact GPCMV (PC/intact) was modified by mutagenesis either to abrogate PC expression (PC/null; containing a frame-shift mutation in , homolog of ) or to delete genes encoding three MHC Class I homologs and a protein kinase R (PKR) evasin while retaining the PC (3DX/Δ145). Attenuated vaccines were compared to sham immunization in a two-dose preconception subcutaneous inoculation regimen in GPCMV seronegative Hartley guinea pigs. Vaccines induced transient, low-grade viremia in 5/12 PC/intact-, 2/12 PC/null-, and 1/11 3DX/Δ145-vaccinated animals. Upon completion of the two-dose vaccine series, ELISA titers for the PC/intact group (geometic mean titer (GMT) 13,669) were not significantly different from PC/null (GMT 8127) but were significantly higher than for the 3DX/Δ145 group (GMT 6185; < 0.01). Dams were challenged with salivary gland-adapted GPCMV in the second trimester. All vaccines conferred protection against maternal viremia. Newborn weights were significantly lower in sham-immunized controls (84.5 ± 2.4 g) compared to PC/intact (96 ± 2.3 g), PC/null (97.6 ± 1.9 g), or 3DX/Δ145 (93 ± 1.7) pups ( < 0.01). Pup mortality in sham-immunized controls was 29/40 (73%) and decreased to 1/44 (2.3%), 2/46 (4.3%), or 4/40 (10%) in PC/intact, PC/null, or 3DX/Δ145 groups, respectively (all < 0.001 compared to control). Congenital GPCMV transmission occurred in 5/44 (11%), 16/46 (35%), or 29/38 (76%) of pups in PC/intact, PC/null, or 3DX/Δ145 groups, versus 36/40 (90%) in controls. For infected pups, viral loads were lower in pups born to vaccinated dams compared to controls. Sequence analysis demonstrated that infected pups in the vaccine groups had salivary gland-adapted GPCMV and not vaccine strain-specific sequences, indicating that congenital transmission was due to the challenge virus and not vaccine virus. We conclude that inclusion of the PC in a live, attenuated preconception vaccine improves immunogenicity and reduces vertical transmission, but PC-null vaccines are equal to PC-intact vaccines in reducing maternal viremia and protecting against GPCMV-related pup mortality.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8706200PMC
http://dx.doi.org/10.3390/v13122370DOI Listing

Publication Analysis

Top Keywords

vertical transmission
12
pc/intact pc/null
12
guinea pig
8
pig cytomegalovirus
8
pentameric complex
8
vaccine
8
virus vaccine
8
salivary gland-adapted
8
gland-adapted gpcmv
8
maternal viremia
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!