In this work, a compact dielectric sensor for the detection of adulteration in solid and liquid samples using planar resonators is presented. Six types of filter prototypes operating at 2.4 GHz are presented, optimized, numerically assessed, fabricated and experimentally validated. The obtained experimental results provided an error less than 6% with respect to the simulated results. Moreover, a size reduction of about 69% was achieved for the band stop filter and a 75% reduction for band pass filter compared to standard sensors realized using open/short circuited stub microstrip lines. From the designed filters, the miniaturised filter with Q of 95 at 2.4 GHz and size of 35 mm × 35 mm is formulated as a sensor and is validated theoretically and experimentally. The designed sensor shows better sensitivity, and it depends upon the dielectric property of the sample to be tested. Simulation and experimental validation of the designed sensor is carried out by loading different samples onto the sensor. The adulteration detection of various food samples using the designed sensor is experimentally validated and shows excellent sensing on adding adulterants to the original sample. The sensitivity of the sensor is analyzed by studying the variations in resonant frequency, scattering parameters, phase and Q factor with variation in the dielectric property of the sample loaded onto the sensor.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8707907 | PMC |
http://dx.doi.org/10.3390/s21248506 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!