A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Collision-Aware Routing Using Multi-Objective Seagull Optimization Algorithm for WSN-Based IoT. | LitMetric

In recent trends, wireless sensor networks (WSNs) have become popular because of their cost, simple structure, reliability, and developments in the communication field. The Internet of Things (IoT) refers to the interconnection of everyday objects and sharing of information through the Internet. Congestion in networks leads to transmission delays and packet loss and causes wastage of time and energy on recovery. The routing protocols are adaptive to the congestion status of the network, which can greatly improve the network performance. In this research, collision-aware routing using the multi-objective seagull optimization algorithm (CAR-MOSOA) is designed to meet the efficiency of a scalable WSN. The proposed protocol exploits the clustering process to choose cluster heads to transfer the data from source to endpoint, thus forming a scalable network, and improves the performance of the CAR-MOSOA protocol. The proposed CAR-MOSOA is simulated and examined using the NS-2.34 simulator due to its modularity and inexpensiveness. The results of the CAR-MOSOA are comprehensively investigated with existing algorithms such as fully distributed energy-aware multi-level (FDEAM) routing, energy-efficient optimal multi-path routing protocol (EOMR), tunicate swarm grey wolf optimization (TSGWO), and CoAP simple congestion control/advanced (CoCoA). The simulation results of the proposed CAR-MOSOA for 400 nodes are as follows: energy consumption, 33 J; end-to-end delay, 29 s; packet delivery ratio, 95%; and network lifetime, 973 s, which are improved compared to the FDEAM, EOMR, TSGWO, and CoCoA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8707898PMC
http://dx.doi.org/10.3390/s21248496DOI Listing

Publication Analysis

Top Keywords

collision-aware routing
8
routing multi-objective
8
multi-objective seagull
8
seagull optimization
8
optimization algorithm
8
proposed car-mosoa
8
car-mosoa
5
algorithm wsn-based
4
wsn-based iot
4
iot trends
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!