Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Visual object tracking (VOT) is a vital part of various domains of computer vision applications such as surveillance, unmanned aerial vehicles (UAV), and medical diagnostics. In recent years, substantial improvement has been made to solve various challenges of VOT techniques such as change of scale, occlusions, motion blur, and illumination variations. This paper proposes a tracking algorithm in a spatiotemporal context (STC) framework. To overcome the limitations of STC based on scale variation, a max-pooling-based scale scheme is incorporated by maximizing over posterior probability. To avert target model from drift, an efficient mechanism is proposed for occlusion handling. Occlusion is detected from average peak to correlation energy (APCE)-based mechanism of response map between consecutive frames. On successful occlusion detection, a fractional-gain Kalman filter is incorporated for handling the occlusion. An additional extension to the model includes APCE criteria to adapt the target model in motion blur and other factors. Extensive evaluation indicates that the proposed algorithm achieves significant results against various tracking methods.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8706150 | PMC |
http://dx.doi.org/10.3390/s21248481 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!