Smart remaining useful life (RUL) prognosis methods for condition-based maintenance (CBM) of engineering equipment are getting high popularity nowadays. Current RUL prediction models in the literature are developed with an ideal database, i.e., a combination of a huge "run to failure" and "run to prior failure" data. However, in real-world, run to failure data for rotary machines is difficult to exist since periodic maintenance is continuously practiced to the running machines in industry, to save any production downtime. In such a situation, the maintenance staff only have run to prior failure data of an in operation machine for implementing CBM. In this study, a unique strategy for the RUL prediction of two identical and in-process slurry pumps, having only real-time run to prior failure data, is proposed. The obtained vibration signals from slurry pumps were utilized for generating degradation trends while a hybrid nonlinear autoregressive (NAR)-LSTM-BiLSTM model was developed for RUL prediction. The core of the developed strategy was the usage of the NAR prediction results as the "path to be followed" for the designed LSTM-BiLSTM model. The proposed methodology was also applied on publically available NASA's C-MAPSS dataset for validating its applicability, and in return, satisfactory results were achieved.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8715750 | PMC |
http://dx.doi.org/10.3390/s21248420 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!