Human Segmentation and Tracking Survey on Masks for MADS Dataset.

Sensors (Basel)

Department of Intelligent Computer Systems, Czestochowa University of Technology, 42-218 Czestochowa, Poland.

Published: December 2021

Human segmentation and tracking often use the outcome of person detection in the video. Thus, the results of segmentation and tracking depend heavily on human detection results in the video. With the advent of Convolutional Neural Networks (CNNs), there are excellent results in this field. Segmentation and tracking of the person in the video have significant applications in monitoring and estimating human pose in 2D images and 3D space. In this paper, we performed a survey of many studies, methods, datasets, and results for human segmentation and tracking in video. We also touch upon detecting persons as it affects the results of human segmentation and human tracking. The survey is performed in great detail up to source code paths. The MADS (Martial Arts, Dancing and Sports) dataset comprises fast and complex activities. It has been published for the task of estimating human posture. However, before determining the human pose, the person needs to be detected as a segment in the video. Moreover, in the paper, we publish a mask dataset to evaluate the segmentation and tracking of people in the video. In our MASK MADS dataset, we have prepared 28 k mask images. We also evaluated the MADS dataset for segmenting and tracking people in the video with many recently published CNNs methods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8706170PMC
http://dx.doi.org/10.3390/s21248397DOI Listing

Publication Analysis

Top Keywords

segmentation tracking
24
human segmentation
16
mads dataset
12
human
9
tracking
8
tracking survey
8
detection video
8
estimating human
8
human pose
8
tracking people
8

Similar Publications

A Dual-Channel and Frequency-Aware Approach for Lightweight Video Instance Segmentation.

Sensors (Basel)

January 2025

The Higher Educational Key Laboratory for Measuring & Control Technology and Instrumentation of Heilongjiang Province, Harbin University of Science and Technology, Harbin 150080, China.

Video instance segmentation, a key technology for intelligent sensing in visual perception, plays a key role in automated surveillance, robotics, and smart cities. These scenarios rely on real-time and efficient target-tracking capabilities for accurate perception and intelligent analysis of dynamic environments. However, traditional video instance segmentation methods face complex models, high computational overheads, and slow segmentation speeds in time-series feature extraction, especially in resource-constrained environments.

View Article and Find Full Text PDF

This paper presents an approach for event recognition in sequential images using human body part features and their surrounding context. Key body points were approximated to track and monitor their presence in complex scenarios. Various feature descriptors, including MSER (Maximally Stable Extremal Regions), SURF (Speeded-Up Robust Features), distance transform, and DOF (Degrees of Freedom), were applied to skeleton points, while BRIEF (Binary Robust Independent Elementary Features), HOG (Histogram of Oriented Gradients), FAST (Features from Accelerated Segment Test), and Optical Flow were used on silhouettes or full-body points to capture both geometric and motion-based features.

View Article and Find Full Text PDF

Discretely monitoring traffic systems and tracking payloads on vehicle targets can be challenging when traversal occurs off main roads where overhead traffic cameras are not present. This work proposes a portable roadside vehicle detection system as part of a solution for tracking traffic along any path. Training semantic segmentation networks to automatically detect specific types of vehicles while ignoring others will allow the user to track payloads present only on certain vehicles of interest, such as train cars or semi-trucks.

View Article and Find Full Text PDF

Study on the Influence of Rural Highway Landscape Green Vision Rate on Driving Load Based on Factor Analysis.

Sensors (Basel)

January 2025

School of Civil Engineering Architecture and the Environment, Hubei University of Technology, Wuhan 430068, China.

The green vision rate of rural highway greening landscape is a key factor affecting the driver's visual load. Based on this, this paper uses the eye tracking method to study the visual characteristics of drivers in different green vision environments on rural highways in Xianning County. Based on the HSV color space model, this paper obtains four sections of rural highway with a green vision rate of 10~20%, green vision rate of 20~30%, green vision rate of 30~40%, and green vision rate of 40~50%.

View Article and Find Full Text PDF

Striking velocity is a key performance indicator in striking-based combat sports, such as boxing, Karate, and Taekwondo. This study aims to develop a low-cost, accelerometer-based system to measure kick and punch velocities in combat athletes. Utilizing a low-cost mobile phone in conjunction with the PhyPhox app, acceleration data was collected and analyzed using a custom algorithm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!