The design and fabrication of novel electrochemical sensors with high analytical and operational characteristics are one of the sustainable trends in modern analytical chemistry. Polymeric film formation by the electropolymerization of suitable monomers is one of the methods of sensors fabrication. Among a wide range of the substances able to polymerize, the phenolic ones are of theoretical and practical interest. The attention is focused on the sensors based on the electropolymerized natural phenolic antioxidants and their analytical application. The typical electropolymerization reaction schemes are discussed. Phenol electropolymerization leads to insulating coverage formation. Therefore, a combination of electropolymerized natural phenolic antioxidants and carbon nanomaterials as modifiers is of special interest. Carbon nanomaterials provide conductivity and a high working surface area of the electrode, while the polymeric film properties affect the selectivity and sensitivity of the sensor response for the target analyte or the group of structurally related compounds. The possibility of guided changes in the electrochemical response for the improvement of target compounds' analytical characteristics has appeared. The analytical capabilities of sensors based on electropolymerized natural phenolic antioxidants and their future development in this field are discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8707084PMC
http://dx.doi.org/10.3390/s21248385DOI Listing

Publication Analysis

Top Keywords

electropolymerized natural
16
natural phenolic
16
phenolic antioxidants
16
sensors based
12
based electropolymerized
12
electrochemical sensors
8
antioxidants analytical
8
analytical application
8
polymeric film
8
carbon nanomaterials
8

Similar Publications

Although microbial fuel cells (MFC) could be a promising energy source, their implementation is largely limited by low performance. There are several approaches to overcome this issue. For example, MFC performance can be enhanced using redox mediators (RM) capable of transferring electrons between microorganisms and MFC electrodes.

View Article and Find Full Text PDF

Studies on Square Wave and Cyclic Voltammetric Behavior of 1,2- and 1,4-Dihydroxybenzenes and Their Derivatives in Acetic Acid, Ethyl Acetate and Mixtures of the Two.

Methods Protoc

December 2024

Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Pécs, Honvéd Street 1, H-7624 Pécs, Hungary.

An electrochemical investigation of 1,2- and 1,4-dihydroxybenzenes was carried out with platinum macro- and microelectrodes using square wave and cyclic voltammetry techniques. Furthermore, the effect of the two solvents-acetic acid and ethyl acetate-was compared. When using square wave voltammetry, signals only appeared at lower frequencies and only when the supporting electrolyte was in excess, as expected due to the relatively low permittivity of the used solvents.

View Article and Find Full Text PDF

Insight into Robust Anion Coordination Behavior of Organic Cathode with Dual Elongated π-Conjugated Motifs.

Angew Chem Int Ed Engl

December 2024

Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China.

Organic electrode materials offer multi-electron reactivity, flexible structures, and redox reversibility, but encounter poor conductivity and durability in electrolytes. To overcome above barriers, we propose a dual elongation strategy of π-conjugated motifs with active sites, involving the extended carbazole and electropolymerized polymer, which enhances electronic conductivity by the electronic delocalization of electron-withdrawing conjugated groups, boosts theoretical capacity by increasing redox-active site density, and endows robust electrochemical stability attributed to the nanonetwork feature of polymer structures. As a proof-of-concept, 5,11-dihydridoindolo[3,2-b]carbazole (DHIC) is selected as the model cathode material for a dual-ion battery, with elongated carbazole groups functioning both as redox-active centers and polymerization anchors.

View Article and Find Full Text PDF
Article Synopsis
  • Designing π-conjugated conductive polymers with redox-active groups can improve charge storage in aqueous energy devices.
  • The electropolymerization of s-triazine on carbon cloth leads to a polytriazine-coated electrode that demonstrates strong charge storage capabilities, achieving specific capacities of 101.4 mAh g-1 in acidic solution and 50.3 mAh g-1 in zinc sulfate.
  • A device using these electrodes shows impressive energy and power densities, and maintains 83.3% capacity after 2500 cycles, suggesting that polytriazine is a promising material for future energy storage applications.
View Article and Find Full Text PDF

Enhanced sensing of dinotefuran in foods based on BC/ZnCo MOF@PBA nano-enzyme induced MIECL sensor.

Food Chem

December 2024

College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China. Electronic address:

Natural enzymes can increase the signal of electrochemiluminescence. However, they are expensive and environmentally demanding. Here, the hollow prussian blue analogues decorated and biomass-derived carbon doped ZnCo metal-organic framework nano-enzyme was designed via self-assembly method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!