Sensing technologies demonstrate promising potential in providing the construction industry with a safe, productive, and high-quality process. The majority of sensing technologies in the construction research area have been focused on construction automation research in prefabrication, on-site operation, and logistics. However, most of these technologies are either not implemented in real construction projects or are at the very early stages in practice. The corresponding applications are far behind, even in extensively researched aspects such as Radio Frequency Identification, ultra-wideband technology, and Fiber Optic Sensing technology. This review systematically investigates the current status of sensing technologies in construction from 187 articles and explores the reasons responsible for their slow adoption from 69 articles. First, this paper identifies common sensing technologies and investigates their implementation extent. Second, contributions and limitations of sensing technologies are elaborated to understand the current status. Third, key factors influencing the adoption of sensing technologies are extracted from construction stakeholders' experience. Demand towards sensing technologies, benefits and suitability of them, and barriers to their adoption are reviewed. Lastly, the governance framework is determined as the research tendency facilitating sensing technologies adoption. This paper provides a theoretical basis for the governance framework development. It will promote the sensing technologies adoption and improve construction performance including safety, productivity, and quality.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8704534 | PMC |
http://dx.doi.org/10.3390/s21248307 | DOI Listing |
EMBO J
January 2025
Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, 84112-5650, USA.
Na-K-Cl cotransporters functions as an anion importers, regulating trans-epithelial chloride secretion, cell volume, and renal salt reabsorption. Loop diuretics, including furosemide, bumetanide, and torsemide, antagonize both NKCC1 and NKCC2, and are first-line medicines for the treatment of edema and hypertension. NKCC1 activation by the molecular crowding sensing WNK kinases is critical if cells are to combat shrinkage during hypertonic stress; however, how phosphorylation accelerates NKCC1 ion transport remains unclear.
View Article and Find Full Text PDFInforming and engaging all actors in the land sector, including land-owners and managers, researchers, policy-makers and citizens, on the most effective sustainable land-based solutions and behavioural changes is a key strategy for achieving climate change adaptation and mitigation targets at the global as well as at EU and local level. One requisite to support actors in the land sector is to provide them publicly available, reliable and ready-to-use information related to the implementation of Land-based Adaptation and Mitigation Solutions (LAMS). Here we introduce a LAMS catalogue, a collection of meaningful quantitative and qualitative information on 60 solutions characterised according to a set of specifications (e.
View Article and Find Full Text PDFACS Sens
January 2025
Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, PR China.
The simultaneous detection of electroencephalography (EEG) signals and neurotransmitter levels plays an important role as biomarkers for the assessment and monitoring of emotions and cognition. This paper describes the development of boron and nitrogen codoped graphene-diamond (BNGrD) microelectrodes with a diameter of only 200 μm for sensing EEG signals and dopamine (DA) levels, which have been developed for the first time. The optimized BNGrD microelectrode responded sensitively to both EEG and DA signals, with a signal-to-noise ratio of 9 dB for spontaneous EEG signals and a limit of detection as low as 124 nM for DA.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China.
In this study, the dispersion behavior of MoS₂ in ionic liquids (ILs) with varying alkyl chain lengths was the primary focus of investigation, followed by the design of a novel PAM/SMA/CMC/PDA@MoS hydrogel. By optimizing the concentrations of CMC and PDA@MoS, a bifunctional hydrogel with both sensing and catalytic functions was successfully developed. Mechanical tests revealed that the PAM/SMA/CMC/0.
View Article and Find Full Text PDFTalanta
January 2025
Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, No. 6 Xianxialing Road, Qingdao, 266061, PR China. Electronic address:
Quorum sensing signal molecules released by microorganisms serve as critical biomarkers regulating the attachment and aggregation of marine microbes on engineered surfaces. Hence, the development of efficient and convenient methods for detecting quorum sensing signal molecules is crucial for monitoring and controlling the formation and development of marine biofouling. Advanced optoelectronic technologies offer increased opportunities and methods for detecting quorum sensing signal molecules, thereby enhancing the accuracy and efficiency of detection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!