Due to their potential in the treatment of neurodegenerative diseases, caspase-6 inhibitors have attracted widespread attention. However, the existing caspase-6 inhibitors showed more or less inevitable deficiencies that restrict their clinical development and applications. Therefore, there is an urgent need to develop novel caspase-6 candidate inhibitors. Herein, a gated recurrent unit (GRU)-based recurrent neural network (RNN) combined with transfer learning was used to build a molecular generative model of caspase-6 inhibitors. The results showed that the GRU-based RNN model can accurately learn the SMILES grammars of about 2.4 million chemical molecules including ionic and isomeric compounds and can generate potential caspase-6 inhibitors after transfer learning of the known 433 caspase-6 inhibitors. Based on the novel molecules derived from the molecular generative model, an optimal logistic regression model and Surflex-dock were employed for predicting and ranking the inhibitory activities. According to the prediction results, three potential caspase-6 inhibitors with different scaffolds were selected as the promising candidates for further research. In general, this paper provides an efficient combinational strategy for de novo molecular design of caspase-6 inhibitors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8706867 | PMC |
http://dx.doi.org/10.3390/ph14121249 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!