A NIR-Based Study of Desorption Kinetics during Continuous Spin Freeze-Drying.

Pharmaceutics

Laboratory of Pharmaceutical Process Analytical Technology, Department of Pharmaceutical Analysis, Ghent University, 9000 Ghent, Belgium.

Published: December 2021

AI Article Synopsis

  • The pharmaceutical industry is advancing towards continuous manufacturing techniques and enhanced process understanding, necessitating the use of process analytical technology (PAT) tools.
  • A new continuous spin freeze-drying technology for drying biopharmaceuticals significantly reduces drying times by over 90% compared to conventional methods, utilizing thin layers of product and infrared heating.
  • Research employing near-infrared spectroscopy reveals that product temperature and cooling rate greatly influence desorption rates during secondary drying, while factors like filling volume and chamber pressure have varying impacts on the overall drying process.

Article Abstract

The pharmaceutical industry is progressing toward the development of more continuous manufacturing techniques. At the same time, the industry is striving toward more process understanding and improved process control, which requires the implementation of process analytical technology tools (PAT). For the purpose of drying biopharmaceuticals, a continuous spin freeze-drying technology for unit doses was developed, which is based on creating thin layers of product by spinning the solution during the freezing step. Drying is performed under vacuum using infrared heaters to provide energy for the sublimation process. This approach reduces drying times by more than 90% compared to conventional batch freeze-drying. In this work, a new methodology is presented using near-infrared (NIR) spectroscopy to study the desorption kinetics during the secondary drying step of the continuous spin freeze-drying process. An inline PLS-based NIR calibration model to predict the residual moisture content of a standard formulation (i.e., 10% sucrose) was constructed and validated. This model was then used to evaluate the effect of different process parameters on the desorption rate. Product temperature, which was controlled by a PID feedback mechanism of the IR heaters, had the highest positive impact on the drying rate during secondary drying. Using a higher cooling rate during spin freezing was found to significantly increase the desorption rate as well. A higher filling volume had a smaller negative effect on the drying rate while the chamber pressure during drying was found to have no significant effect in the range between 10 and 30 Pa.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8708275PMC
http://dx.doi.org/10.3390/pharmaceutics13122168DOI Listing

Publication Analysis

Top Keywords

continuous spin
12
spin freeze-drying
12
study desorption
8
desorption kinetics
8
drying
8
secondary drying
8
desorption rate
8
drying rate
8
process
6
rate
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!