Casein kinase-1 alpha (CK1α) is a multifunctional protein kinase that belongs to the serine/threonine kinases of the CK1α family. It is involved in various signaling pathways associated with chromosome segregation, cell metabolism, cell cycle progression, apoptosis, autophagy, etc. It has been known to involve in the progression of many diseases, including cancer, neurodegeneration, obesity, and behavioral disorders. The elevated expression of CK1α in diseased conditions facilitates its selective targeting for therapeutic management. Here, we have performed virtual screening of phytoconstituents from the IMPPAT database seeking potential inhibitors of CK1α. First, a cluster of compounds was retrieved based on physicochemical parameters following Lipinski's rules and PAINS filter. Further, high-affinity hits against CK1α were obtained based on their binding affinity score. Furthermore, the ADMET, PAINS, and PASS evaluation was carried out to select more potent hits. Finally, following the interaction analysis, we elucidated three phytoconstituents, Semiglabrinol, Curcusone_A, and Liriodenine, posturing considerable affinity and specificity towards the CK1α binding pocket. The result was further evaluated by molecular dynamics (MD) simulations, dynamical cross-correlation matrix (DCCM), and principal components analysis (PCA), which revealed that binding of the selected compounds, especially Semiglabrinol, stabilizes CK1α and leads to fewer conformational fluctuations. The MM-PBSA analysis suggested an appreciable binding affinity of all three compounds toward CK1α.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8707374 | PMC |
http://dx.doi.org/10.3390/pharmaceutics13122157 | DOI Listing |
J Med Chem
January 2025
Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany.
Members of the casein kinase 1 (CK1) family have emerged as key regulators of cellular signaling and as potential drug targets. Functional annotation of the 7 human isoforms would benefit from isoform-selective inhibitors, allowing studies on the role of these enzymes in normal physiology and disease pathogenesis. However, due to significant sequence homology within the catalytic domain, isoform selectivity is difficult to achieve with conventional small molecules.
View Article and Find Full Text PDFJ Fungi (Basel)
December 2024
College of Agriculture, Yanbian University, Yanji 133002, China.
Protoplasts are essential tools for genetic manipulation and functional genomics research in fungi. This study systematically optimized protoplast preparation conditions and examined transcriptional changes throughout the preparation and regeneration processes to elucidate the molecular mechanisms underlying the formation and regeneration of protoplasts in . The results indicated an optimal protoplast yield of 5.
View Article and Find Full Text PDFJ Cell Sci
December 2024
Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA.
ChemMedChem
December 2024
Nantes Université, Cibles et médicaments des infections et de l'immunité, IICiMed, UR 1155, F-44000, Nantes, France.
Our research group previously discovered CTN1122, an imidazo[1,2-a]pyrazine compound with promising antileishmanial activity against intramacrophage amastigotes of Leishmania major and L. donovani strains. CTN1122 effectively targets Leishmania casein kinase 1 (L-CK1.
View Article and Find Full Text PDFActa Neuropathol Commun
December 2024
Department of Neurosciences, University of California, 9500 Gilman Drive, San Diego, La Jolla, CA, 92093-0624, USA.
Hyperphosphorylated TDP-43 aggregates in the cytoplasm of motor neurons is a neuropathological signature of amyotrophic lateral sclerosis (ALS). These aggregates have been proposed to possess a toxic disease driving role in ALS pathogenesis and progression, however, the contribution of phosphorylation to TDP-43 aggregation and ALS disease mechanisms remains poorly understood. We've previously shown that CK1δ and CK1ε phosphorylate TDP-43 at disease relevant sites, and that genetic reduction and chemical inhibition could reduce phosphorylated TDP-43 (pTDP-43) levels in cellular models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!