AI Article Synopsis

  • The management of hard-to-heal wounds is challenging, and acellular dermal matrices (ADMs) are introduced to enhance healing, with a focus on developing novel ADMs from abdominoplasty skin through various decellularization methods.
  • Three decellularization protocols were tested, and although all effectively removed cellular components, they significantly differed in preserving specific proteins and collagen types.
  • The study concluded that the novel ADM1 dressing improves wound closure and scar maturation, highlighting the importance of different decellularization techniques on the purity and effectiveness of ADMs in wound treatment.

Article Abstract

The management of hard-to-heal wounds is a significant clinical challenge. Acellular dermal matrices (ADMs) have been successfully introduced to enhance the healing process. Here, we aimed to develop protocol for the preparation of novel ADMs from abdominoplasty skin. We used three different decellularization protocols for skin processing, namely, 1M NaCl and sodium dodecyl sulfate (SDS, in ADM1); 2M NaCl and sodium dodecyl sulfate (SDS, in ADM1); and a combination of recombinant trypsin and Triton X-100 (in hADM 3). We assessed the effectiveness of decellularization and ADM's structure by using histochemical and immunochemical staining. In addition, we evaluated the therapeutic potential of novel ADMs in a murine model of wound healing. Furthermore, targeted transcriptomic profiling of genes associated with wound healing was performed. First, we found that all three proposed methods of decellularization effectively removed cellular components from abdominoplasty skin. We showed, however, significant differences in the presence of class I human leukocyte antigen (HLA class I ABC), Talin 1/2, and chondroitin sulfate proteoglycan (NG2). In addition, we found that protocols, when utilized differentially, influenced the preservation of types I, III, IV, and VII collagens. Finally, we showed that abdominoplasty skin-derived ADMs might serve as an effective and safe option for deep wound treatment. More importantly, our novel dressing (ADM1) improves the kinetics of wound closure and scar maturation in the proliferative and remodeling phases of wound healing. In conclusion, we developed a protocol for abdominoplasty skin decellularization suitable for the preparation of biological dressings. We showed that different decellularization methods affect the purity, structure, and therapeutic properties of ADMs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8708629PMC
http://dx.doi.org/10.3390/pharmaceutics13122118DOI Listing

Publication Analysis

Top Keywords

abdominoplasty skin
12
wound healing
12
deep wound
8
therapeutic potential
8
novel adms
8
nacl sodium
8
sodium dodecyl
8
dodecyl sulfate
8
sulfate sds
8
sds adm1
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!