Nucleic acids represent a promising lead for engineering the immune system. However, naked DNA, mRNA, siRNA, and other nucleic acids are prone to enzymatic degradation and face challenges crossing the cell membrane. Therefore, increasing research has been recently focused on developing novel delivery systems that are able to overcome these drawbacks. Particular attention has been drawn to designing lipid and polymer-based nanoparticles that protect nucleic acids and ensure their targeted delivery, controlled release, and enhanced cellular uptake. In this respect, this review aims to present the recent advances in the field, highlighting the possibility of using these nanosystems for therapeutic and prophylactic purposes towards combatting a broad range of infectious, chronic, and genetic disorders.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8708541 | PMC |
http://dx.doi.org/10.3390/pharmaceutics13122053 | DOI Listing |
Biochem Biophys Res Commun
January 2025
Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China; Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China. Electronic address:
Bacterial adaptive immunity, driven by CRISPR-Cas systems, protects against foreign nucleic acids from mobile genetic elements (MGEs), like bacteriophages. The type I-E CRISPR-Cas system employs the Cascade (CRISPR-associated complex for antiviral defense) complex for target DNA cleavage, guided by crRNA. Anti-CRISPR (Acr) proteins, such as AcrIE7, counteract this defense by inhibiting Cascade activity.
View Article and Find Full Text PDFBioorg Chem
January 2025
Department of Chemistry, Sarojini Naidu College for Women, Kolkata 700028, India. Electronic address:
Peptide nucleic acids (PNA), synthetic molecules comprising a peptide-like backbone and natural and unnatural nucleobases, have garnered significant attention for their potential applications in gene editing and other biomedical fields. The unique properties of PNA, particularly enhanced stability/specificity/affinity towards targeted DNA and RNA sequences, achieved significant attention recently for gene silencing, gene correction, antisense therapy, drug delivery, biosensing and other various diagnostic aspects. This review explores the structure, properties, and potential of PNA in transforming genetic engineering including potent biomedical challenges.
View Article and Find Full Text PDFTransl Oncol
January 2025
Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy; Division of Biostatistics & Epidemiology Research, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, United States.
Background: Liquid biopsy (LB) is a laboratory test performed on a fluid sample aiming at analyzing molecular data derived from circulating cells and related entities, or from nucleic acids. This umbrella review aims to map and evaluate the evidence supporting the use of LB in medicine across different medical specialities and conditions.
Methods: We searched three repositories from database inception up to October 1, 2023 and we included meta-analyses of observational studies reporting data on the use of LB, compared to gold standard, and its accuracy (area under the curve, AUC).
Small
January 2025
School of Engineering, Westlake University, Hangzhou, Zhejiang, 310023, China.
Photolithography is the most widely used micropatterning technique at the micro- and nanoscale in device fabrication. However, traditional photoresists used in photolithography are typically nonaqueous-based toxic substances that require harsh conditions for processing, limiting the development of biofunctional and biocompatible micropatterns. In this study, a protein-based aqueous photoresist derived from chemically modified silk fibroin named SAMA, capable of achieving high-resolution micropatterning (<1.
View Article and Find Full Text PDFOMICS
January 2025
Department of Biotechnology, Brainware University, Barasat, West Bengal, India.
Next-generation cancer phenomics by deployment of multiple molecular endophenotypes coupled with high-throughput analyses of gene expression offer veritable opportunities for triangulation of discovery findings in non-small cell lung cancer (NSCLC) research. This study reports differentially expressed genes in NSCLC using publicly available datasets (GSE18842 and GSE229253), uncovering 130 common genes that may potentially represent crucial molecular signatures of NSCLC. Additionally, network analyses by GeneMANIA and STRING revealed significant coexpression and interaction patterns among these genes, with four notable hub genes-, , and -identified as pivotal in NSCLC progression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!