AI Article Synopsis

  • The water content of the skin is crucial for determining how effectively chemicals can penetrate the skin barrier, making it important for the design of transdermal drug delivery patches.
  • This study utilized terahertz (THz) spectroscopy to investigate how occlusive skin patches impact skin hydration over a 24-hour period.
  • Results showed that the patches significantly increased skin water content and that the skin remained hydrated for up to four hours after removing the fully occlusive patches, highlighting the potential of THz spectroscopy in improving the design and effectiveness of transdermal drug patches.

Article Abstract

Water content of the skin is an important parameter for controlling the penetration rate of chemicals through the skin barrier; therefore, for transdermal patches designed for drug delivery to be successful, the effects of the patches on the water content of the skin must be understood. Terahertz (THz) spectroscopy is a technique which is being increasingly investigated for biomedical applications due to its high sensitivity to water content and non-ionizing nature. In this study, we used THz measurements of the skin (in vivo) to observe the effect of partially and fully occlusive skin patches on the THz response of the skin after the patches had been applied for 24 h. We were able to observe an increase in the water content of the skin following the application of the patches and to identify that the skin remained hyper-hydrated for four hours after the removal of the fully occlusive patches. Herein, we show that THz spectroscopy has potential for increasing the understanding of how transdermal patches affect the skin, how long the skin takes to recover following patch removal, and what implications these factors might have for how transdermal drug patches are designed and used.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8706937PMC
http://dx.doi.org/10.3390/pharmaceutics13122052DOI Listing

Publication Analysis

Top Keywords

water content
16
content skin
12
skin
11
patches
9
transdermal drug
8
drug delivery
8
transdermal patches
8
patches designed
8
thz spectroscopy
8
fully occlusive
8

Similar Publications

Chia Oil Nanoemulsion Using Chia Mucilage as a Wall Material: An Alternative for Cracker Fat Substitution.

Plant Foods Hum Nutr

December 2024

Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Subsede Sureste, Carretera Sierra Papacal-Chuburná Puerto - Parque Científico y Tecnológico de Yucatán. Tablaje Catastral 31264. Km 5.5, Mérida, México.

Crackers are bakery products that have shown an increase in consumption. One way to make crackers more nutritious is to add bioactive compounds, such as chia oil which is rich in polyunsaturated fatty acids. As these compounds are highly unsaturated, encapsulation techniques, such as nanoemulsion, allow the addition of them in foods, guaranteeing the preservation of their properties.

View Article and Find Full Text PDF

This study introduces a novel one-pot strategy for the chemical valorization of poly(lactic acid) (PLA), coupling its base-catalyzed depolymerization with the ring-opening polymerization (ROP) of trimethylene carbonate (TMC). The process exploits an eutectic mixture of lactide (LA) and TMC, which lowers the thermal input required for PLA degradation. Using potassium aryloxide (KOArtBu) as a bifunctional catalyst, the PLA is first quickly hydrolyzed into oligomers or lactic acid, which subsequently initiate the slower polymerization of TMC.

View Article and Find Full Text PDF

A porous, photocatalytically active, and water-stable composite membrane has been developed based on Cu-NH-MIL-125(Ti), a titanium-based metal-organic framework (MOF) and PVDF polymeric matrix. To tune the structural and functional properties of the PVDF/MOF composites, the loading degree of the MOF within the polymer was systematically varied. The most effective performance of the composite material was achieved with a 10% wt/wt loading of MOF into the PVDF matrix.

View Article and Find Full Text PDF

Crystal Facet Regulation and Ru Incorporation of CoO for Acidic Oxygen Evolution Reaction Electrocatalysis.

ACS Nanosci Au

December 2024

State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.

Acidic oxygen evolution reaction (OER) has long been the bottleneck of proton exchange membrane water electrolysis. Ru- and Ir-based oxides are currently state-of-the-art electrocatalysts for acidic OER, but their high cost limits their widespread application. CoO is a promising alternative, yet the performance requires further improvement.

View Article and Find Full Text PDF

Supercritical-dense phase CO pipeline transportation has been proven to have excellent economic and safety benefits for long-distance CO transportation in large-scale. Hydrates are easily generated in the high-pressure and low-temperature sections, resulting in blockage, so it is necessary to build the prediction model for hydrate formation in the long-distance CO pipeline transportation. In the prediction model of hydrate formation of our work, the phase equilibrium was determined by the Chen-Guo model, and the lateral growth of hydrate was calculated by the comprehensive growth model, and the hydrate growth was estimated by analogy with the condensation process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: