Given the globally abundant availability of waste plastics and the negative environmental impacts of textile dyeing sludge (TDS), their co-combustion can effectively enhance the circular economies, energy recovery, and environmental pollution control. The (co-)combustion performances, gas emissions, and ashes of TDS and two plastics of polypropylene (PP) and polyethylene (PE) were quantified and characterized. The increased blend ratio of PP and PE improved the ignition, burnout, and comprehensive combustion indices. The two plastics interacted with TDS significantly in the range of 200-600 ℃. TDS pre-ignited the combustion of the plastics which in turn promoted the combustion of TDS. The co-combustions released more CO but less CH, C-H, and CO as CO was less persistent than the others in the atmosphere. The Ca-based minerals in the plastics enhanced S-fixation and reduced SO emission. The activation energy of the co-combustion fell from 126.78 to 111.85 kJ/mol and 133.71-79.91 kJ/mol when the PE and PP additions rose from 10% to 50%, respectively. The co-combustion reaction mechanism was best described by the model of f(α) = (1-α). The reaction order was reduced with the additions of the plastics. The co-combustion operation interactions were optimized via an artificial neural network so as to jointly meet the multiple objectives of maximum energy production and minimum emissions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2021.128069DOI Listing

Publication Analysis

Top Keywords

textile dyeing
8
dyeing sludge
8
plastics
7
co-combustion
6
tds
5
co-combustion life-cycle
4
life-cycle circularity
4
circularity artificial
4
artificial intelligence-based
4
intelligence-based multi-objective
4

Similar Publications

A novel magnetic mesoporous fluorinated metal-organic framework material (FeO@MIP-206-F) has been synthesized specifically for application as an adsorbent for perfluoroalkyl carboxylic acids (PFCAs) extraction by magnetic solid-phase extraction (MSPE). The carefully designed FeO@MIP-206-F material features an appropriate porosity, open metal sites of Zr, and functional groups (fluorine and amino) conducive to the adsorption process. The distinctive architecture of the material endows it with exceptional extraction capabilities for PFCAs.

View Article and Find Full Text PDF

Dyeing of synthetic fiber-based wool blended fabrics in supercritical carbon dioxide.

Sci Rep

December 2024

Dyeing, Printing and Textile Auxiliaries Department, Textile Research and Technology Institute, National Research Centre, 33 EL Buhouth St., Dokki, 12622, Giza, Egypt.

Development of supercritical carbon dioxide (SC-CO) dyeing technology for natural fabrics and their blended fabrics is essential for the textile industry due to environmental and economic considerations. Wool (W), polyester (PET) and nylon (N) fabrics and their wool/polyester (W/PET) and wool/nylon (W/N) blended fabrics were dyed in SC-CO medium with a synthesized reactive disperse dye containing a vinylsulphone (VS) reactive group, which behaves as a disperse dye for synthetic fibers and a reactive dye for protein fibers. The SC-CO dyeing performance of all fabrics was investigated in terms of color strength, fixation, colorimetric and fastness measurements and compared with the conventional aqueous dyeing method.

View Article and Find Full Text PDF

Evaluating value-added biochemical and biodiesel production from Chlorococcum humicolo algal biomass in phycoremediation of textile dye effluents.

Bioresour Technol

December 2024

Department of Biotechnology, Sathyabama Institute of Science and Technology, Deemed to be University, Chennai 600 119, Tamil Nadu, India.

This study investigates the potentials of Chlorococcum humicolo algal biomass for the extraction of valuable biochemical and biodiesel production, with focus on the phycoremediation of textile dye effluents. The alga was cultivated in three media: CFTRI medium, combined dye effluent, and dye bath effluent in the laboratory. The highest cell count (254 × 10 cells/ml) and lowest oil content (16.

View Article and Find Full Text PDF

Interfacial engineering-based colonization of biofilms on polyethylene terephthalate (PET) surfaces: Implications for whole-cell biodegradation of microplastics.

Sci Total Environ

December 2024

School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Key Laboratory for Advanced Textile Composites of the Education Ministry, Tiangong University, Tianjin 300387, China; National Innovation Center of Advanced Dyeing and Finishing Technology, Tai'an, Shandong 271000, China. Electronic address:

Microplastic pollution has become a significant environmental issue. One of the most important sources and components of microplastics is polyester fabric - polyethylene terephthalate (PET). Because the catalytic depolymerization of PET typically requires specific conditions such as alkaline environments, specific solvents, or high temperatures, there is an urgent need for a simpler, eco-friendly solution with high degradation efficiency for managing the vast amounts of PET textile waste.

View Article and Find Full Text PDF

The textile industry is undergoing a transformative shift towards sustainability, driven by mounting environmental concerns and consumer demand for eco-friendly products. This review article explores the use of mordants in textile dyeing processes, encompassing both traditional metal mordants and emerging bio-mordants. Metal mordants, commonly used in textile dyeing, present environmental challenges due to their toxic nature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!