A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An automatic measurement system of distal femur morphological parameters using 3D slicer software. | LitMetric

An automatic measurement system of distal femur morphological parameters using 3D slicer software.

Bone

Department of Bone and Joint Surgery, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, PR China. Electronic address:

Published: March 2022

In the field of joint surgery, the computer-aided design of knee prostheses suitable for the Chinese population requires a large quantity of anatomical knee data. In this study, we propose a new method that uses 3D Slicer software to automatically measure the morphological parameters of the distal femur. First, 141 femur samples were segmented from CT data to establish the femoral shape library. Next, balanced iterative reducing and clustering using hierarchies (BIRCH) combined with iterative closest point (ICP) and generalised procrustes analysis (GPA) were used to achieve fast registration of the femur samples. The statistical model was automatically calculated from the registered femur samples, and an orthopaedic surgeon marked the points on the statistical model. Finally, we developed an automatic measurement system using 3D Slicer software, and a deformable model matching method was applied to establish the point correspondence between the statistical model and the other samples. By matching points on the statistical model to corresponding points in other samples, we measured all other samples. We marked six points and measured eight parameters. We evaluated the performance of automatic matching by comparing the points marked manually with those matched automatically and verified the accuracy of the system by comparing the manual and automatic measurement results. The results indicated that the average error of the automatic matching points was 1.03 mm, and the average length error and average angle error measured automatically by the system were 0.37 mm and 0.63°, respectively. These errors were smaller than the intra-rater and inter-rater errors measured manually by two different surgeons, which showed that the accuracy of our automatic method was high. Taken together, this study established an accurate and automatic measurement system for the distal femur based on the secondary development of 3D Slicer software to assist orthopaedic surgeons in completing the measurements of big data and further promote the improved design of Chinese-specific knee prostheses.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bone.2021.116300DOI Listing

Publication Analysis

Top Keywords

automatic measurement
16
slicer software
16
statistical model
16
measurement system
12
distal femur
12
femur samples
12
system distal
8
morphological parameters
8
knee prostheses
8
marked points
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!