Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The critical environmental issues of antibiotic resistance and renewable energies supply urge researching materials synthesis and catalyst activity on hydrogen production processes. Aiming to analyse the antibacterial effect of platinum-silver (Ag-Pt) nanoparticles (NPs) and the catalyst effect on NaBH hydrolysis that can be used for hydrogen generation technology, in this work, Ag-Pt NPs were prepared using aqueous propolis extract. Various methods were used for the characterization (Uv-vis Spectroscopy, Transmission Electron Microscopy (TEM), Fourier Transform Infrared Spectroscopy (FTIR), Atomic Force Microscopy (AFM) and X-ray diffraction Spectroscopy (XRD)). The antimicrobial activity of Ag-Pt bimetallic nanoparticles was evaluated in vitro by the microdilution method against Escherichia coli, Staphylococcus aureus, Bacillus subtilis, Klebsiella pneumoniae, Staphylococcus epidermidis, and Serratia marcescens. The results confirmed the antimicrobial activity of bimetallic NPs Ag-Pt concentrations of (25, 50, and 100 μg/ml). A concentration of 100 μg/ml showed low bacterial viability varying between 22.58% and 29.67% for the six tested bacteria. For the catalyst activity on NaBH hydrolysis, the results showed high turnover factor (TOF) and low activation energy of 1208.57 h and 25.61 kJ/mol, respectively, with high hydrogen yield under low temperature. Synthesized Ag-Pt NPs can have great potential for biological and hydrogen storage applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envres.2021.112622 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!