The purpose of this case report is to describe spasticity and encephalopathy that developed in a multiple sclerosis patient following carbapenem administration. A 55-year-old female with multiple sclerosis developed spasticity and encephalopathy within 24 hours of meropenem and ertapenem administration. This was the second time that she had developed encephalopathy following carbapenem administration. The patient gradually recovered over four days following discontinuation of carbapenem therapy. Carbapenem neurotoxicity, a well-documented adverse effect, has been linked to several risk factors, including central nervous system lesions. Despite this, there is little evidence describing the risk of neurotoxicity in patients with multiple sclerosis. It is important to understand the potential adverse effects of carbapenems in specific patient populations to help guide appropriate treatment of infections.

Download full-text PDF

Source
http://dx.doi.org/10.1177/08971900211063277DOI Listing

Publication Analysis

Top Keywords

multiple sclerosis
16
carbapenem administration
12
sclerosis patient
8
patient carbapenem
8
case report
8
spasticity encephalopathy
8
carbapenem
5
probable encephalopathy
4
encephalopathy spasticity
4
multiple
4

Similar Publications

The most common genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) is an intronic GC repeat expansion in C9orf72. The repeats undergo bidirectional transcription to produce sense and antisense repeat RNA species, which are translated into dipeptide repeat proteins (DPRs). As toxicity has been associated with both sense and antisense repeat-derived RNA and DPRs, targeting both strands may provide the most effective therapeutic strategy.

View Article and Find Full Text PDF

We present a case of a woman in her 40s with disseminated enterovirus infection in the setting of maintenance therapy with ocrelizumab for relapsing-remitting multiple sclerosis. The patient originally presented with fever, bilateral lower limb swelling and hypoalbuminaemia. She subsequently developed a productive cough and diarrhoea, and a viral respiratory multiplex panel detected rhino/enterovirus.

View Article and Find Full Text PDF

This study applies the Gaussian process progression model, a Bayesian data-driven disease progression model, to analyse the evolution of primary progressive multiple sclerosis. Utilizing data from 1521 primary progressive multiple sclerosis participants collected within the International Progressive Multiple Sclerosis Alliance Project, the analysis includes 18 581 longitudinal time-points (average follow-up time: 28.2 months) of disability assessments including the expanded disability status scale, symbol digit modalities, timed 25-foot-walk, 9-hole-peg test and of MRI metrics such as T1 and T2 lesion volume and normalized brain volume.

View Article and Find Full Text PDF

Introduction: Although the HaCaT keratinocyte model has been used in previous research to study the effects of antipsoriatic agents, there is still a lack of comprehensive understanding of the mechanism of imiquimod (IMQ)-induced proliferation and signal transduction in psoriasis-like keratinocytes.

Objectives: This study aimed to investigate the molecular mechanisms and pathways associated with psoriasis-like inflammation caused by IMQ in human keratinocytes.

Materials And Methods: HaCaT cells were exposed to different concentrations of IMQ to induce inflammation similar to that observed in psoriasis.

View Article and Find Full Text PDF

A 50-year data-driven model of disability and lesion load trajectories in progressive multiple sclerosis.

Brain Commun

December 2024

UCL Hawkes Institute and UCL Queen Square Institute of Neurology, University College London, London, UK.

This scientific commentary refers to 'A data-driven model of disability progression in progressive multiple sclerosis', by Garbarino . (https://doi.org/10.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!