The preparation of self-assembled porphyrins with orderly stacked nanostructures for emulating natural photosynthesis has stimulated extensive efforts to optimize the energy conversion efficiency. However, the elucidation of how orderly stacked structures promote photocatalysis at the molecular level remains a great challenge. Here, unique porphyrin nanoleaves with designed and ordered structure are synthesized and show a hydrogen evolution rate higher than that of commercial powder. Photodeposition of cocatalysts and Kelvin probe force microscopy measurement suggest selective aggregation of photogenerated electrons and holes at different active sites. Combined with theoretical calculations, we find that the orderly packing changes molecular symmetry and induces a molecular dipole, which increases linearly along the π-π stacking direction and forms a strong built-in electric field. The built-in electric field drives photogenerated electrons and holes for the unique crossed transportation along different directions. These findings reveal how orderly stacked structures promote photocatalysis and provide a novel approach for highly efficient water splitting.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.1c03550 | DOI Listing |
Nanomaterials (Basel)
December 2024
National Key Laboratory of Scattering and Radiation, Beijing 100854, China.
The disordered assembly and low conductivity of carbon nanotubes are the main problems that limit the application of electromagnetic interference (EMI) shielding. In this work, an ordered lamellar assembly structure of multiwalled carbon nanotube/TiCT (MWCNT/TiCT) hybrid films was achieved by vacuum-assisted filtration through the hybridization of TiCT nanosheets and carbon nanotubes, where carbon nanotubes were tightly sticking on the surface of TiCT nanosheets via physical adsorption and hydrogen bonding. Compared with the pure carbon nanotubes films, the hybrid MWCNT/TiCT films achieved a significant improvement in conductivity of 452.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Department of Materials Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan.
This study investigates backbone engineering and evaluates the thermoelectric properties of FeCl-doped naphthobisthiadiazole (NTz)-based donor-acceptor (D-A) conjugated polymer films. The NTz acceptor unit is coupled with three distinct donor units, namely dialkylated terthiophene (3T), dialkylated quaterthiophene (4T), and dialkylated bisthienyl thienothiophene (2T-TT) to yield copolymers designated as PNTz3T, PNTz4T, and PNTzTT. The difference in donor units leads to diverse molecule stacking and electronic properties, which can be systematically discovered via the three polymers.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Materials Research Laboratory, University of California, Santa Barbara, CA 93106, USA.
Two-dimensional imine covalent organic frameworks (2D imine-COFs) are crystalline porous materials with broad application prospects. Despite the efforts into their design and synthesis, the mechanisms of their formation are still not fully understood. Herein, a one-pot two-step mechanochemical cocrystal precursor synthetic strategy is developed for efficient construction of 2D imine-COFs.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
January 2025
School of Dentistry, University of Queensland, 288 Herston Road, Herston, QLD 4006, Australia. Electronic address:
A key challenge in using melt electrowriting (MEW) technology is incorporating large amounts of bioactive inorganic materials, such as hydroxyapatite (HA). In the present study, following optimization of the fabrication parameters, 40 %-HA (HA40) nanoparticles were pre-mixed into medical-grade polycaprolactone (PCL) and processed using the MEW (MEW) technique to mimic the structure and function of the natural extracellular matrix (ECM) for bone regeneration. The HA40 fibrous composite scaffolds showed continuous writing and obtained a well-connected and orderly stacked fibre with a small diameter size (67 ± 8.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2024
School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
Fabrication of well-dispersed thin graphene oxide (GO) films (GOFs) has always been a challenge. Herein, a quick preparation method for GOFs was developed using our homemade GO with a large lateral size. The film can be prepared in less than 2 h via a metal framework-induced self-assembly process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!