AI Article Synopsis

Article Abstract

A simple procedure was used to generate and decorate leather structures with different amounts from zinc oxide (ZnO) nanoparticles to produce multifunctional leather structure by pulsed laser ablation method in liquid media based on changing the ablation time in just one-pot method. The impact of varying concentrations of ZnO nanoparticles embedded on the surface of leather on water resistance, water vapor permeability, mechanical characteristics, and UV-shielding efficiency was examined by different characterization techniques like X-ray diffraction, surface area, UV-visible spectroscopy, scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy, and thermogravimetric analysis. The results showed that the combination between the external functional groups of leather with ZnO nanoparticles was discovered. ZnO nanoparticles effectively coated the surface of leather tissue, as seen by SEM images, and their form a spherical morphology. Leather with ZnO nanoparticles added had the highest capacity to kill Escherichia coli bacteria, exceeding leather without modification and ZnO nanoparticles alone in 50-hr incubation. In addition, the incubation period had a substantial impact on the suppression of Staphylococcus aureus bacteria growth by leather samples.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jemt.24022DOI Listing

Publication Analysis

Top Keywords

zno nanoparticles
24
multifunctional leather
8
zinc oxide
8
pulsed laser
8
laser ablation
8
ablation method
8
leather
8
surface leather
8
leather zno
8
nanoparticles
7

Similar Publications

The widespread use of zinc oxide nanoparticles (ZnO NPs) in various products raises significant ecological concerns due to their potential toxic effects in aquatic environments. This study employed the Asian green mussel (Perna viridis) as a model to explore the molecular and ecological risks of ZnO NP exposure using transcriptomics. Mussels exposed to ZnO NPs (5, 10, and 15 mg/L) for 28 days showed significant gene expression changes in gill tissues, affecting immune response, calcium homeostasis, and cellular stress.

View Article and Find Full Text PDF

Background: Fascioliasis represents one of the most significant parasitic and foodborne zoonotic diseases in the world. Resistance to currently deployed human and veterinary flukicides is a growing health problem. Zinc oxide nanoparticles (ZnO-NPs) have developed enormous importance in nanomedicine.

View Article and Find Full Text PDF

Stem cell nanotechnology (SCN) is an important scientific field to guide stem cell-based research of nanoparticles. Currently, nanoparticles (NPs) have a rich spectrum regarding the sources from which they are obtained (metallic, polymeric, etc.), the methods of obtaining them (physical, chemical, biological), and their shape, size, electrical charge, etc.

View Article and Find Full Text PDF

As emerging cutting-edge energy storage technologies, aqueous zinc-ion batteries (AZIBs) have garnered extensive research attention for its high safety, low cost, abundant raw materials, and, eco-friendliness. Nevertheless, the commercialization of AZIBs is mainly limited by insufficient development of cathode materials. Among potential candidates, MXene-based materials stand out as a promising option for their unique combination of hydrophilicity and conductivity.

View Article and Find Full Text PDF

Crystal Violet (CV) is a vibrant and harmful dye known for its toxicity to aquatic life and potential carcinogenic effects on humans. This study explores the removal of CV through photocatalysis driven by visible light, as well as examining the antibacterial and antibiofilm characteristics of zinc oxide nanoparticles (ZnO NPs) synthesized from the aerial roots of Ficus benghalensis. Various characterization techniques were employed to confirm the optical properties, crystal lattices, and morphology of ZnO NPs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!