A non-enzymatic dopamine electrochemical sensing probe was developed. A hexagonal shape zinc-doped cobalt oxide (Zn-CoO) nanostructure was prepared by a facile hydrothermal approach. The combination of Zn, which has an abundance of electrons, and CoO exhibited a synergistically electron-rich nanocomposite. The crystallinity of the nanostructure was investigated using X-ray diffraction. A scanning electron microscope (SEM) was used to examine the surface morphology, revealing hexagonal nanoparticles with an average particle size of 400 nm. High-resolution transmission electron microscopy (HR-TEM) was used to confirm the nanostructure of the doped material. The nanostructure's bonding and functional groups were verified using Fourier transform infrared spectroscopy (FTIR). The electrochemical characterization was conducted by using electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and amperometry. The resistivity of the electrode was confirmed through EIS and showed that the bare glassy carbon electrode (GCE) exhibited higher charge transfer resistance as compared to modified Zn-CoO/GCE. The sensing probe was developed by modifying the surface of GCE with Zn-CoO nanostructure and tested as an electrochemical sensor for dopamine oxidation; it operated best at a working potential of 0.17 V (vs Ag/AgCl). The developed sensor exhibited a low limit of detection (0.002 µM), a high sensitivity (126 µA. µM cm), and a wide linear range (0.2 to 185 µM). The sensor showed a short response time of < 1 s. The sensor's selectivity was investigated in the presence of coexisting species (uric acid, ascorbic acid, adrenaline, epinephrine, norepinephrine, histamine, serotonin, tyramine, phenethylamine, and glucose) with no effects on dopamine determination results. The developed sensor was also successfully used for determining dopamine concentrations in a real sample.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00604-021-05142-z | DOI Listing |
J Fluoresc
January 2025
Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul, 01811, Korea.
We report a bithiophene-based fluorescence probe BDT (2,2'-(((1 E, 1'E)-[2,2'-bithiophene]-5,5'-diylbis(methaneylylidene))bis(azaneylylidene))bis(4-(tert-butyl)phenol)) for recognizing ClO. BDT selectively responded to ClO, leading to a blue fluorescence enhancement in a mixture of DMF/HEPES buffer (9:1, v/v). Importantly, BDT showed an ultrafast response (within 1 s) to ClO among the fluorescent turn-on chemosensors based on bithiophene.
View Article and Find Full Text PDFJ Fluoresc
January 2025
Department of Chemistry, The University of Burdwan, Golapbag, Burdwan, 713104, India.
Nitrogen doped Carbon Quantum Dots (NCQDs) have been synthesized using most economical and easiest hydrothermal process. Here, N-phenyl orthophenylenediamine and citric acid were utilised as a source of nitrogen and carbon for the preparation of NCQDs. The synthesized NCQDs were characterized using experimental techniques like UV - Vis absorption, FT-IR, transmission electron microscopy (TEM), X-ray Diffraction (XRD), EDX, dynamic light scattering (DLS), fluorimeter and time resolved fluorescence spectroscopy.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Anhui Provincial Key Laboratory of Biomedical Materials and Chemical Measurement, Laboratory of Functionalized Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
HClO is considered a potential contributing factor and biomarker of inflammatory bowel disease (IBD). Accurate monitoring of lysosomal HClO is important for further developing specific diagnostic and therapeutic schedules for IBD. However, only rare types of fluorescent probes have been reported for detecting HClO in IBD so far.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Department of Physics, 845 W Taylor St, University of Illinois Chicago, Chicago, IL 60607, USA.
Altered DNA dynamics at lesion sites are implicated in how DNA repair proteins sense damage within genomic DNA. Using laser temperature-jump (T-jump) spectroscopy combined with cytosine-analog Förster Resonance Energy Transfer (FRET) probes that sense local DNA conformations, we measured the intrinsic dynamics of DNA containing 3 base-pair mismatches recognized in vitro by Rad4 (yeast ortholog of XPC). Rad4/XPC recognizes diverse lesions from environmental mutagens and initiates nucleotide excision repair.
View Article and Find Full Text PDFJ Microsc
January 2025
Department of Mechanical, Materials and Aerospace Engineering, University of Liverpool, Liverpool, UK.
Electron backscatter diffraction (EBSD) has developed over the last few decades into a valuable crystallographic characterisation method for a wide range of sample types. Despite these advances, issues such as the complexity of sample preparation, relatively slow acquisition, and damage in beam-sensitive samples, still limit the quantity and quality of interpretable data that can be obtained. To mitigate these issues, here we propose a method based on the subsampling of probe positions and subsequent reconstruction of an incomplete data set.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!