Assembly and potential transmission of the Lens culinaris seed microbiome.

FEMS Microbiol Ecol

Department of Soil Science, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada.

Published: January 2022

Soil is an important source of bacteria and fungi for the plant, but seeds can also provide microbial inocula through heritable or stochastic assembly. Seed-associated microbial communities can potentially interact with the host plant through multiple generations. Here, we assessed the impact of two different soil types on the seed microbiome assembly of seven lentil (Lens culinaris) genotypes under environmentally controlled conditions and examined the vertical transmission of bacterial communities from seed to seed across two generations. Bulk soil microbiomes and seed microbiomes were characterized using high-throughput amplicon sequencing of the bacterial 16S rRNA gene. Our results revealed that bacterial communities in the two soils differed significantly and that bacterial communities associated with seeds were significantly impacted by genotype (15%) in one of the soils. Co-occurrence of amplicon sequence variants between generations suggests that members of the genera Cutibacterium, Methylobacterium, Sphingomonas, Streptococcus and Tepidimonas are transmitted and preserved in lentil genotypes irrespective of the soil in which they were grown. Increasing our knowledge of how microbial communities carried by seeds are assembled, transmitted and preserved offers a promising way for future breeding programs to consider microbial communities when selecting for more resilient and productive cultivars.

Download full-text PDF

Source
http://dx.doi.org/10.1093/femsec/fiab166DOI Listing

Publication Analysis

Top Keywords

microbial communities
12
bacterial communities
12
lens culinaris
8
seed microbiome
8
transmitted preserved
8
communities
6
seed
5
assembly potential
4
potential transmission
4
transmission lens
4

Similar Publications

Digging deeper into necrotizing enterocolitis: bridging clinical, microbial, and molecular perspectives.

Gut Microbes

December 2025

Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China.

Necrotizing Enterocolitis (NEC) is a severe, life-threatening inflammatory condition of the gastrointestinal tract, especially affecting preterm infants. This review consolidates evidence from various biomedical disciplines to elucidate the complex pathogenesis of NEC, integrating insights from clinical, microbial, and molecular perspectives. It emphasizes the modulation of NEC-associated inflammatory pathways by probiotics and novel biologics, highlighting their therapeutic potential.

View Article and Find Full Text PDF

Introduction: Colorectal cancer (CRC) is the second most common cause of cancer-related deaths globally. The gut microbiota, along with adenomatous polyps (AP), has emerged as a plausible contributor to CRC progression. This study aimed to scrutinize the impact of the FadA antigen derived from Fusobacterium nucleatum on the expression levels of the ANXA2 ceRNA network and assess its relevance to CRC advancement.

View Article and Find Full Text PDF

Introduction/objectives: Sjogren's syndrome (SS) is a chronic inflammatory and difficult-to-treat autoimmune disease. Timosaponin AIII (TAIII), a plant-derived steroidal saponin, effectively inhibits cell proliferation, induces apoptosis, and exhibits anti-inflammatory properties. This study explored the mechanisms of action of TAIII in SS treatment by studying gut microbiota and short-chain fatty acids (SCFAs) using fecal metabolomics.

View Article and Find Full Text PDF

Integrating the milk microbiome signatures in mastitis: milk-omics and functional implications.

World J Microbiol Biotechnol

January 2025

Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain.

Mammalian milk contains a variety of complex bioactive and nutritional components and microorganisms. These microorganisms have diverse compositions and functional roles that impact host health and disease pathophysiology, especially mastitis. The advent and use of high throughput omics technologies, including metagenomics, metatranscriptomics, metaproteomics, metametabolomics, as well as culturomics in milk microbiome studies suggest strong relationships between host phenotype and milk microbiome signatures in mastitis.

View Article and Find Full Text PDF

Comparative Analysis of the Probiotic Features of Lysinibacillus and Enterobacter Strains Isolated from Gut Tract of Triploid Cyprinid Fish.

Curr Microbiol

January 2025

State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploidy Fish Reproduction and Breeding of the State Education Ministry, College of Life Science, Hunan Normal University, Changsha, 410081, People's Republic of China.

Gut mucosal immunity of teleost is mainly governed by mucosa-associated lymphoid tissues (MALT) and indigenous microbiota on mucosal surfaces of gut tract, which can confer protection against pathogenic invasion. However, the probiotic features of bacterial isolates from gut tract of triploid cyprinid fish (TCF) were largely unclear. In this study, Lysinibacillus and Enterobacter strains were isolated for probiotic identification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!