The coronavirus disease 2019 (COVID-19) public health crisis has reached critical mass, but interdisciplinary research efforts have provided the global community with the first effective medical intervention to fight the pandemic-COVID-19 vaccines. Two of the vaccines approved for use in the United States and Europe deliver nucleic acid in the form of mRNA, the success of which would not be possible without biomaterials. Lipid nanoparticle (LNP)-based mRNA vaccines, discussed in this perspective, protect nucleic acids from degradation and deliver cargo directly to the intracellular compartment of cells where it is translated into the antigenic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein that triggers protective immune responses. Despite success of LNP-based mRNA vaccines thus far, the pandemic has highlighted the need for emerging technologies that enable rapid development and increased accessibility to vaccination. Microneedle arrays, also discussed in this study, provide features that could lower barriers to vaccine access in resource-poor regions. The ability to exchange antigens within arrays could also facilitate swift vaccine deployment as public health needs evolve (e.g., in response to SARS-CoV-2 variants or entirely new pathogens). Therefore, the COVID-19 pandemic has spotlighted the readiness and value of biomaterials for the prevention and management of disease outbreaks.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8787697 | PMC |
http://dx.doi.org/10.1089/dna.2021.0538 | DOI Listing |
Anal Chem
January 2025
Waters Corporation, 34 Maple St., Milford, Massachusetts 01757, United States.
Therapeutic drugs and multivalent vaccines based on the delivery of mRNA via lipid nanoparticle (LNP) technologies are expected to dominate the biopharmaceutical industry landscape in the coming years. Many of these innovative therapies include several nucleic acid components (e.g.
View Article and Find Full Text PDFHum Vaccin Immunother
December 2025
Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China.
Although neo-antigen mRNA vaccines are promising for personalized cancer therapy, their effectiveness is often limited by the immunosuppressive tumor microenvironment (TME). The adenosine AA receptor (AAR) inhibits dendritic cell (DC) function and weakens antitumor T cell responses through hypoxia-driven mechanisms within the TME. This review explores a novel strategy combining neo-antigen mRNA vaccines with AAR antagonists (AARi).
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
Background: The rapid mutation of avian influenza virus (AIV) poses a significant threat to both the poultry industry and public health. Herein, we have successfully developed an mRNA-LNPs candidate vaccine for H5 subtype highly pathogenic avian influenza and evaluated its immunogenicity and protective efficacy.
Results: In experiments on BALB/c mice, the vaccine candidate elicited strong humoral and a certain cellular immune responses and protected mice from the heterologous AIV challenge.
Vaccine
January 2025
Medical Technology Innovation Center, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan. Electronic address:
This study was conducted at 112 government and Juntendo University hospitals in February 2021 for the primary series of SARS-CoV-2 vaccinations. We compared the timing of solicited adverse event (AE) onset and prevalence of unsolicited AEs for Pfizer, Moderna, and AstraZeneca vaccines in a nationwide, large-scale prospective cohort study. The Pfizer and Moderna mRNA vaccines were associated with a higher frequency of fever after the second dose than after the first dose.
View Article and Find Full Text PDFNanomedicine (Lond)
January 2025
Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
Background: Gene therapy is garnering increasing support due to its potential for a "once-delivered, lifelong benefit." The limitations of traditional gene delivery methods have spurred the advancement of bionanomaterials. Despite this progress, a thorough analysis of the evolution, current state, key contributors, focal studies, and future directions of nanomaterials in gene delivery remains absent.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!