Background: Intraventricular hemorrhaging (IVH) within cerebral lateral ventricles affects 20-30% of very low birth weight infants (<1500 g). As the ventricles increase in size, the intracranial pressure increases, leading to post-hemorrhagic ventricle dilatation (PHVD), an abnormal enlargement of the head. The most widely used imaging tool for measuring IVH and PHVD is cranial two-dimensional (2D) ultrasound (US). Estimating volumetric changes over time with 2D US is unreliable due to high user variability when locating the same anatomical location at different scanning sessions. Compared to 2D US, three-dimensional (3D) US is more sensitive to volumetric changes in the ventricles and does not suffer from variability in slice acquisition. However, 3D US images require segmentation of the ventricular surface, which is tedious and time-consuming when done manually.
Purpose: A fast, automated ventricle segmentation method for 3D US would provide quantitative information in a timely manner when monitoring IVH and PHVD in pre-term neonates. To this end, we developed a fast and fully automated segmentation method to segment neonatal cerebral lateral ventricles from 3D US images using deep learning.
Methods: Our method consists of a 3D U-Net ensemble model composed of three U-Net variants, each highlighting various aspects of the segmentation task such as the shape and boundary of the ventricles. The ensemble is made of a U-Net++, attention U-Net, and U-Net with a deep learning-based shape prior combined using a mean voting strategy. We used a dataset consisting of 190 3D US images, which was separated into two subsets, one set of 87 images contained both ventricles, and one set of 103 images contained only one ventricle (caused by limited field-of-view during acquisition). We conducted fivefold cross-validation to evaluate the performance of the models on a larger amount of test data; 165 test images of which 75 have two ventricles (two-ventricle images) and 90 have one ventricle (one-ventricle images). We compared these results to each stand-alone model and to previous works including, 2D multiplane U-Net and 2D SegNet models.
Results: Using fivefold cross-validation, the ensemble method reported a Dice similarity coefficient (DSC) of 0.720 ± 0.074, absolute volumetric difference (VD) of 3.7 ± 4.1 cm , and a mean absolute surface distance (MAD) of 1.14 ± 0.41 mm on 75 two-ventricle test images. Using 90 test images with a single ventricle, the model after cross-validation reported DSC, VD, and MAD values of 0.806 ± 0.111, 3.5 ± 2.9 cm , and 1.37 ± 1.70 mm, respectively. Compared to alternatives, the proposed ensemble yielded a higher accuracy in segmentation on both test data sets. Our method required approximately 5 s to segment one image and was substantially faster than the state-of-the-art conventional methods.
Conclusions: Compared to the state-of-the-art non-deep learning methods, our method based on deep learning was more efficient in segmenting neonatal cerebral lateral ventricles from 3D US images with comparable or better DSC, VD, and MAD performance. Our dataset was the largest to date (190 images) for this segmentation problem and the first to segment images that show only one lateral cerebral ventricle.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mp.15432 | DOI Listing |
Eur Spine J
January 2025
Department of Neurosurgery, Leiden University Medical Center, Albinusdreef 2, 2333ZA, Leiden, The Netherlands.
Purpose: Lumbar spinal stenosis (LSS) is a frequently occurring condition defined by narrowing of the spinal or nerve root canal due to degenerative changes. Physicians use MRI scans to determine the severity of stenosis, occasionally complementing it with X-ray or CT scans during the diagnostic work-up. However, manual grading of stenosis is time-consuming and induces inter-reader variability as a standardized grading system is lacking.
View Article and Find Full Text PDFBMC Cancer
January 2025
Department of Urology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea.
Background: To develop and test the performance of a fully automated system for classifying renal tumor subtypes via deep machine learning for automated segmentation and classification.
Materials And Methods: The model was developed using computed tomography (CT) images of pathologically proven renal tumors collected from a prospective cohort at a medical center between March 2016 and December 2020. A total of 561 renal tumors were included: 233 clear cell renal cell carcinomas (RCCs), 82 papillary RCCs, 74 chromophobe RCCs, and 172 angiomyolipomas.
Int J Oral Maxillofac Surg
January 2025
Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China; National Center for Stomatology, Beijing, China; National Clinical Research Center for Oral Diseases, Beijing, China; National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China. Electronic address:
With developments in computer science and technology, great progress has been made in three-dimensional (3D) ultrasound. Recently, ultrasound-based 3D bone modelling has attracted much attention, and its accuracy has been studied for the femur, tibia, and spine. The use of ultrasound allows data for bone surface to be acquired non-invasively and without radiation.
View Article and Find Full Text PDFPhysiol Rep
February 2025
Motion and Exercise Science, University of Stuttgart, Stuttgart, Germany.
The maintenance of an appropriate ratio of body fat to muscle mass is essential for the preservation of health and performance, as excessive body fat is associated with an increased risk of various diseases. Accurate body composition assessment requires precise segmentation of structures. In this study we developed a novel automatic machine learning approach for volumetric segmentation and quantitative assessment of MRI volumes and investigated the efficacy of using a machine learning algorithm to assess muscle, subcutaneous adipose tissue (SAT), and bone volume of the thigh before and after a strength training.
View Article and Find Full Text PDFJDS Commun
January 2025
Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853.
Hock scoring in dairy cattle is a crucial welfare assessment tool used to evaluate the condition of a cow's hocks, particularly for signs of injury, swelling, or lesions. These scores provide insight into the overall well-being of the animals and are essential for ensuring proper management and housing conditions. Accurate hock scoring is vital because it can indicate issues such as poor bedding quality or inadequate space, which directly affect the health and productivity of the herd.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!