AI Article Synopsis

Article Abstract

Mutations in the γ-aminobutyric acid type A (GABAA) receptor γ2 subunit gene, GABRG2, have been associated with a variety of epilepsy syndromes. A de novo mutation (c.T1027C, p.F343L) in GABRG2 was identified in a patient with early onset epileptic encephalopathy. Zebrafish overexpressing mutant human GABRG2 (F343L) subunits displayed spontaneous seizure activity and convulsive behaviors. In this study, we demonstrated that Tg (hGABRG2F343L) zebrafish displayed hyperactivity during light phase with normal circadian rhythm, as well as increased drug-induced locomotor activity. Real-time quantitative PCR, whole mount in situ hybridization and western blotting showed that Tg(hGABRG2F343L) zebrafish had altered expression of GABAA receptor subunits. Furthermore, investigation of synaptic protein expression and synapse ultrastructure uncovered a robust synaptic phenotype that is causally linked to GABRG2(F343L) mutation. Strikingly, Tg(hGABRG2F343L) zebrafish not only had postsynaptic defects, but also displayed an unanticipated deficit at the presynaptic level. Overall, our Tg(hGABRG2F343L) overexpression zebrafish model has expanded the GABAergic paradigm in epileptic encephalopathy from channelopathy to synaptopathy.

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddab338DOI Listing

Publication Analysis

Top Keywords

epileptic encephalopathy
12
postsynaptic defects
8
gabaa receptor
8
tghgabrg2f343l zebrafish
8
zebrafish
6
encephalopathy associated
4
gabrg2
4
associated gabrg2
4
gabrg2 missense
4
missense mutation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!