Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This study was aimed at exploring the application value of transcranial Doppler (TCD) based on artificial intelligence algorithm in monitoring the neuroendocrine changes in patients with severe head injury in the acute phase; 80 patients with severe brain injury were included in this study as the study subjects, and they were randomly divided into the control group (conventional TCD) and the experimental group (algorithm-optimized TCD), 40 patients in each group. An artificial intelligence neighborhood segmentation algorithm for TCD images was designed to comprehensively evaluate the application value of this algorithm by measuring the TCD image area segmentation error and running time of this algorithm. In addition, the Glasgow coma scale (GCS) and each neuroendocrine hormone level were used to assess the neuroendocrine status of the patients. The results showed that the running time of the artificial intelligence neighborhood segmentation algorithm for TCD was 3.14 ± 1.02 s, which was significantly shorter than 32.23 ± 9.56 s of traditional convolutional neural network (CNN) algorithms ( < 0.05). The false rejection rate (FRR) of TCD image area segmentation of this algorithm was significantly reduced, and the false acceptance rate (FAR) and true acceptance rate (TAR) were significantly increased ( < 0.05). The consistent rate of the GCS score and Doppler ultrasound imaging diagnosis results in the experimental group was 93.8%, which was significantly higher than the 80.3% in the control group ( < 0.05). The consistency rate of Doppler ultrasound imaging diagnosis results of patients in the experimental group with abnormal levels of follicle stimulating hormone (FSH), prolactin (PRL), growth hormone (GH), adrenocorticotropic hormone (ACTH), and thyroid stimulating hormone (TSH) was significantly higher than that of the control group ( < 0.05). In summary, the artificial intelligence neighborhood segmentation algorithm can significantly shorten the processing time of the TCD image and reduce the segmentation error of the image area, which significantly improves the monitoring level of TCD for patients with severe craniocerebral injury and has good clinical application value.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8694971 | PMC |
http://dx.doi.org/10.1155/2021/3584034 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!