A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Monitoring of Neuroendocrine Changes in Acute Stage of Severe Craniocerebral Injury by Transcranial Doppler Ultrasound Image Features Based on Artificial Intelligence Algorithm. | LitMetric

This study was aimed at exploring the application value of transcranial Doppler (TCD) based on artificial intelligence algorithm in monitoring the neuroendocrine changes in patients with severe head injury in the acute phase; 80 patients with severe brain injury were included in this study as the study subjects, and they were randomly divided into the control group (conventional TCD) and the experimental group (algorithm-optimized TCD), 40 patients in each group. An artificial intelligence neighborhood segmentation algorithm for TCD images was designed to comprehensively evaluate the application value of this algorithm by measuring the TCD image area segmentation error and running time of this algorithm. In addition, the Glasgow coma scale (GCS) and each neuroendocrine hormone level were used to assess the neuroendocrine status of the patients. The results showed that the running time of the artificial intelligence neighborhood segmentation algorithm for TCD was 3.14 ± 1.02 s, which was significantly shorter than 32.23 ± 9.56 s of traditional convolutional neural network (CNN) algorithms ( < 0.05). The false rejection rate (FRR) of TCD image area segmentation of this algorithm was significantly reduced, and the false acceptance rate (FAR) and true acceptance rate (TAR) were significantly increased ( < 0.05). The consistent rate of the GCS score and Doppler ultrasound imaging diagnosis results in the experimental group was 93.8%, which was significantly higher than the 80.3% in the control group ( < 0.05). The consistency rate of Doppler ultrasound imaging diagnosis results of patients in the experimental group with abnormal levels of follicle stimulating hormone (FSH), prolactin (PRL), growth hormone (GH), adrenocorticotropic hormone (ACTH), and thyroid stimulating hormone (TSH) was significantly higher than that of the control group ( < 0.05). In summary, the artificial intelligence neighborhood segmentation algorithm can significantly shorten the processing time of the TCD image and reduce the segmentation error of the image area, which significantly improves the monitoring level of TCD for patients with severe craniocerebral injury and has good clinical application value.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8694971PMC
http://dx.doi.org/10.1155/2021/3584034DOI Listing

Publication Analysis

Top Keywords

artificial intelligence
20
segmentation algorithm
16
doppler ultrasound
12
patients severe
12
control group
12
experimental group
12
intelligence neighborhood
12
neighborhood segmentation
12
tcd image
12
image area
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!