B chromosomes represent additional chromosomes found in many eukaryotic organisms. Their origin is not completely understood but recent genomic studies suggest that they mostly arise through rearrangements and duplications from standard chromosomes. They can occur in single or multiple copies in a cell and are usually present only in a subset of individuals in the population. Because B chromosomes frequently show unstable inheritance, their maintenance in a population is often associated with meiotic drive or other mechanisms that increase the probability of their transmission to the next generation. For all these reasons, B chromosomes have been commonly considered to be nonessential, selfish, parasitic elements. Although it was originally believed that B chromosomes had little or no effect on an organism's biology and fitness, a growing number of studies have shown that B chromosomes can play a significant role in processes such as sex determination, pathogenicity and resistance to pathogens. In some cases, B chromosomes became an essential part of the genome, turning into new sex chromosomes or germline-restricted chromosomes with important roles in the organism's fertility. Here, we review such cases of "cellular domestication" of B chromosomes and show that B chromosomes can be important genomic players with significant evolutionary impact.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8695967 | PMC |
http://dx.doi.org/10.3389/fgene.2021.727570 | DOI Listing |
Prenat Diagn
January 2025
Center for Fetal Medicine and Pregnancy, Department of Gynecology, Fertility, and Pregnancy, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.
Objective: To evaluate the prevalence of chromosomal aberrations in fetuses with isolated PRUV in a nationwide cohort with 1st-trimester screening for aneuploidies.
Method: A retrospective study including all pregnancies in Denmark with a due date between 2010 and 2022. We retrieved all cases from patient files, where we searched for "PRUV" in the conclusion field.
AMB Express
January 2025
Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University, P.O. Box 68, Cairo, 11241, Egypt.
The increasing demand for natural alternatives to synthetic fungicides has prompted research into natural products like essential oils for postharvest disease management. This study investigated the antifungal, antioxidant, cytotoxic, and genotoxic potential of essential oil mixtures derived from oregano, rosemary, and mint against Penicillium digitatum, the predominant fungal pathogen causing green mold in orange fruits. P.
View Article and Find Full Text PDFNat Microbiol
January 2025
Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
Bacterial genomes have regions known as defence islands that encode diverse systems to protect against phage infection. Although genetic elements that capture and store gene cassettes in Vibrio species, called integrons, are known to play an important role in bacterial adaptation, a role in phage defence had not been defined. Here we combine bioinformatic and molecular techniques to show that the chromosomal integron of Vibrio parahaemolyticus is a hotspot for anti-phage defence genes.
View Article and Find Full Text PDFExp Mol Med
January 2025
Section on DNA Repair, Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
RecQ helicases, highly conserved proteins with pivotal roles in DNA replication, DNA repair and homologous recombination, are crucial for maintaining genomic integrity. Mutations in RECQL4 have been associated with various human diseases, including Rothmund-Thomson syndrome. RECQL4 is involved in regulating major DNA repair pathways, such as homologous recombination and nonhomologous end joining (NHEJ).
View Article and Find Full Text PDFNat Commun
January 2025
MRC Laboratory of Medical Sciences, London, UK.
Gene enhancers often form long-range contacts with promoters, but it remains unclear if the activity of enhancers and their chromosomal contacts are mediated by the same DNA sequences and recruited factors. Here, we study the effects of expression quantitative trait loci (eQTLs) on enhancer activity and promoter contacts in primary monocytes isolated from 34 male individuals. Using eQTL-Capture Hi-C and a Bayesian approach considering both intra- and inter-individual variation, we initially detect 19 eQTLs associated with enhancer-eGene promoter contacts, most of which also associate with enhancer accessibility and activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!