Glutathione S-transferases (GSTs) constitute a large family of enzymes with a wide range of cellular functions. Recently, plant GSTs have gained a great deal of attention due to their involvement in the detoxification of electrophilic xenobiotics and peroxides under adverse environmental conditions, such as salt, cold, UV-B and drought stress. A previous study reported that a GST gene () in tea plant was distinctly induced in response to drought, suggesting this gene plays a critical role in the drought stress response. In this study, by using quantitative real-time PCR (qRT-PCR) and β-glucuronidase (GUS) reporter lines, we further demonstrated that was upregulated in response to drought stress and exogenous abscisic acid (ABA) treatments. Overexpression of in resulted in enhanced drought tolerance as indicated by the improved scavenging of excess amounts of reactive oxygen species (ROS) under drought conditions. Furthermore, we found that CsWRKY48 acts as a transcriptional activator and that its expression is induced in response to drought stress and ABA treatment. Electrophoretic mobility shift assays (EMSAs), dual-luciferase (LUC) assays and transient expression assays in tea plant leaves revealed that CsWRKY48 directly binds to the W-box elements in the promoter of and activates its expression. Taken together, our results provide additional knowledge of drought stress responses in tea plant.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8696008 | PMC |
http://dx.doi.org/10.3389/fpls.2021.795919 | DOI Listing |
Transgenic Res
January 2025
Kauser Abdulla Malik School of Life Sciences, Forman Christian College (A Chartered University), Ferozpur Road, Lahore, 54600, Pakistan.
Drought, as an abiotic stressor, globally limits cereal productivity, leading to early aging of leaves and lower yields. The expression of the isopentenyl transferase (IPT) gene, which is involved in cytokinin (CK) biosynthesis, can delay drought-induced leaf senescence. In this study, the Agrobacterium Isopentenyl transferase (IPT) gene was introduced into two local hexaploid wheat cultivars, NR-421 and FSD-2008.
View Article and Find Full Text PDFTheor Appl Genet
January 2025
College of Agronomy, Hebei Agricultural University, Baoding, 071000, Hebei, China.
Wheat (Triticum aestivum L.) is one of the most important cereal crops, with its grain serving as a predominant staple food source on a global scale. However, there are many biotic and abiotic stresses challenging the stability of wheat production.
View Article and Find Full Text PDFJ Integr Plant Biol
January 2025
State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China.
Plants depend heavily on efficient nutrient uptake and utilization for optimal growth and development. However, plants are constantly subjected to a diverse array of biotic stresses, such as pathogen infections, insect pests, and herbivory, as well as abiotic stress like drought, salinity, extreme temperatures, and nutrient imbalances. These stresses significantly impact the plant's ability to take up nutrient and use it efficiency.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada.
Drought conditions severely curtail the ability of plants to accumulate biomass due to the closure of stomata and the decrease of photosynthetic assimilation rate. Additionally, there is a shift in the plant's metabolic processes toward the production of metabolites that offer protection and aid in osmoadaptation, as opposed to those required for development and growth. To limit water loss via non-stomatal transpiration, plants adjust the load and composition of cuticle waxes, which act as an additional barrier.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, China.
The Jacalin-related lectins () gene family play a crucial role in regulating plant development and responding to environmental stress. However, a systematic bioinformatics analysis of the gene family in Gramineae plants has been lacking. In this study, we identified 101 JRL proteins from five Gramineae species and classified them into eight distinct clades.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!