A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Assessment of Drug Proarrhythmicity Using Artificial Neural Networks With Deterministic Model Outputs. | LitMetric

Assessment of Drug Proarrhythmicity Using Artificial Neural Networks With Deterministic Model Outputs.

Front Physiol

Computational Medicine Laboratory, Department of IT convergence Engineering, Kumoh National Institute of Technology, Gumi, South Korea.

Published: December 2021

As part of the Comprehensive Proarrhythmia Assay initiative, methodologies for predicting the occurrence of drug-induced torsade de pointes computer simulations have been developed and verified recently. However, their predictive performance still requires improvement. Herein, we propose an artificial neural networks (ANN) model that uses nine multiple input features, considering the action potential morphology, calcium transient morphology, and charge features to further improve the performance of drug toxicity evaluation. The voltage clamp experimental data for 28 drugs were augmented to 2,000 data entries using an uncertainty quantification technique. By applying these data to the modified O'Hara Rudy model, nine features (dVm/dt, AP, APD90, APD50, Ca, CaD90, CaD50, qNet, and qInward) were calculated. These nine features were used as inputs to an ANN model to classify drug toxicity into high-risk, intermediate-risk, and low-risk groups. The model was trained with data from 12 drugs and tested using the data of the remaining 16 drugs. The proposed ANN model demonstrated an AUC of 0.92 in the high-risk group, 0.83 in the intermediate-risk group, and 0.98 in the low-risk group. This was higher than the classification performance of the method proposed in previous studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8703011PMC
http://dx.doi.org/10.3389/fphys.2021.761691DOI Listing

Publication Analysis

Top Keywords

ann model
12
artificial neural
8
neural networks
8
drug toxicity
8
data drugs
8
model
6
data
5
assessment drug
4
drug proarrhythmicity
4
proarrhythmicity artificial
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!