Objective: Emerging evidence suggests that brain angiotensin-(1-7) (Ang-(1-7)) deficiency contributes to the pathogenesis of Alzheimer's disease (AD). Meanwhile, our previous studies revealed that restoration of brain Ang-(1-7) levels provided neuroprotection by inhibition of inflammatory responses during AD progress. However, the potential molecular mechanisms by which Ang-(1-7) modulates neuroinflammation remain unclear.

Materials And Methods: APP/PS1 mice were injected intraperitoneally with AVE0991 (a nonpeptide analogue of Ang-(1-7)) once a day for 30 consecutive days. Cognitive functions, neuronal and synaptic integrity, and inflammation-related markers were assessed. Since astrocytes played a crucial role in AD-related neuroinflammation whilst long noncoding RNAs (lncRNAs) were reported to participate in modulating inflammatory responses, astrocytes of APP/PS1 mice were isolated for high-throughput lncRNA sequencing to identify the most differentially expressed lncRNA following AVE0991 treatment. Afterward, the downstream pathways of this lncRNA in the anti-inflammatory action of AVE0991 were investigated using primary astrocytes.

Results: AVE0991 rescued spatial cognitive impairments and alleviated neuronal and synaptic damage in APP/PS1 mice. The levels of Aβ in the brain of APP/PS1 mice were not affected by AVE0991. By employing high-throughput lncRNA sequencing, our in vitro study demonstrated for the first time that AVE0991 suppressed astrocytic NLRP3 inflammasome-mediated neuroinflammation via a lncRNA SNHG14-dependent manner. SNHG14 acted as a sponge of miR-223-3p while NLRP3 represented a direct target of miR-223-3p in astrocytes. In addition, miR-223-3p participated in the AVE0991-induced suppression of astrocytic NLRP3 inflammasome.

Conclusion: Our results suggest that Ang-(1-7) analogue AVE0991 inhibits astrocyte-mediated neuroinflammation via SNHG14/miR-223-3p/NLRP3 pathway and offers neuroprotection in APP/PS1 mice. These findings reveal the underlying mechanisms by which Ang-(1-7) inhibits neuroinflammation under AD condition and uncover the potential of its nonpeptide analogue AVE0991 in AD treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8694579PMC
http://dx.doi.org/10.2147/JIR.S343575DOI Listing

Publication Analysis

Top Keywords

app/ps1 mice
20
analogue ave0991
12
ave0991
9
astrocyte-mediated neuroinflammation
8
neuroinflammation lncrna
8
snhg14/mir-223-3p/nlrp3 pathway
8
pathway offers
8
offers neuroprotection
8
alzheimer's disease
8
inflammatory responses
8

Similar Publications

Alzheimer's disease (AD) is marked by impaired cognitive functions, particularly in learning and memory, owing to complex and diverse mechanisms. Methionine restriction (MR) has been found to exert a mitigating effect on brain oxidative stress to improve AD. However, the bidirectional crosstalk between the gut and brain through which MR enhances learning and memory in AD, as well as the effects of fecal microbiota transplantation (FMT) from MR mice on AD mice, remains underexplored.

View Article and Find Full Text PDF

Alzheimer's disease (AD), the most prevalent form of dementia in the elderly, involves critical changes such as reduced aerobic glycolysis in astrocytes and increased neuronal apoptosis, both of which are significant in the disease's pathology. In our study, astrocytes treated with amyloid β1-42 (Aβ) to simulate AD conditions exhibited upregulated expressions of small ubiquitin-like modifier (SUMO)-specific protease 1 (SENP1) and Pumilio RNA Binding Family Member 2 (PUM2), alongside decreased levels of Nuclear factor erythroid 2-related factor 2 (NRF2). SENP1 is notably the most upregulated SUMOylation enzyme in Aβ-exposed astrocytes.

View Article and Find Full Text PDF

Microbiome abnormalities (dysbiosis) significantly contribute to the progression of Alzheimer's disease (AD). However, the therapeutic efficacy of microbiome modulators in protecting against these ailments remains poorly studied. Herein, we tested a cocktail of unique probiotics, including 5 Lactobacillus and 5 Enterococcus strains isolated from infant gut with proven microbiome modulating capabilities.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a progressive degenerative disease that affects a growing number of elderly individuals worldwide. OAB-14, a novel chemical compound developed by our research group, has been approved by the China Food and Drug Administration (FDA) for clinical trials in patients with AD (approval no. YD-OAB-220210).

View Article and Find Full Text PDF

Elevation of ganglioside degradation pathway drives GM2 and GM3 within amyloid plaques in a transgenic mouse model of Alzheimer's disease.

Neurobiol Dis

January 2025

Vulnerable Brain Lab, Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada. Electronic address:

Alzheimer's disease (AD) is a progressive neurodegenerative disease that accounts for two-thirds of all dementia cases, and age is the strongest risk factor. In addition to the amyloid hypothesis, lipid dysregulation is now recognized as a core component of AD pathology. Gangliosides are a class of membrane lipids of the glycosphingolipid family and are enriched in the central nervous system (CNS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!