Corn is a feedstuff commonly fed to dairy cows as a source of energy. The objective of this study was to evaluate whether partially replacing dietary corn with molasses or condensed whey permeate, in lactating dairy cow diets in a dual-flow continuous culture system, can maintain nutrient digestibility by ruminal microorganisms. Furthermore, this study evaluated whether treating condensed whey permeate before feeding could aid the fermentation of the condensed whey permeate in the rumen. Eight fermentors were used in a 4 × 4 replicated Latin square with 4 periods of 10 d each. The control diet (CON) was formulated with corn grain, and the other diets were formulated by replacing corn grain with either sugarcane molasses (MOL), condensed whey permeate (CWP), or treated condensed whey permeate (TCWP). Diets were formulated by replacing 4% of the diet dry matter (DM) in the form of starch from corn with sugars from the byproducts. Sugars were defined as water-soluble carbohydrates (WSC) in the rations. The fermentors were fed 52 g of DM twice daily of diets containing 17% crude protein, 28% neutral detergent fiber, and 45% nonfiber carbohydrates. Liquid treatments were pipetted into each fermentor. After 7 d of adaptation, samples were collected for analyses of volatile fatty acids (VFA), lactate, and ammonia, and fermentors' pH were measured at time points after the morning feeding for 3 d. Pooled samples from effluent containers were collected for similar analyses, nutrient flow, and N metabolism. Data were statistically analyzed using Proc MIXED of SAS version 9.4 (SAS Institute Inc.); fixed effects included treatment and time, and random effects included fermentor, period, and square. The interaction of treatment and time was included for the kinetics samples. The TCWP and MOL treatments maintained greater fermentor pH compared with CWP. Total VFA concentration was increased in CWP compared with MOL. The acetate:propionate ratio was increased in TCWP compared with CON, due to tendencies of increased acetate molar proportion and decreased propionate molar proportion in TCWP. Lactate concentration was increased in MOL. Digestibility of WSC was increased in the diets that replaced corn with byproducts. The partial replacement of 4% of DM from corn starch with the sugars in byproducts had minimal effects on ruminal microbial fermentation and increased pH. Treated CWP had similar effects to molasses.

Download full-text PDF

Source
http://dx.doi.org/10.3168/jds.2021-20818DOI Listing

Publication Analysis

Top Keywords

condensed whey
28
whey permeate
28
partially replacing
8
replacing dietary
8
corn
8
dietary corn
8
corn molasses
8
molasses condensed
8
treated condensed
8
ruminal microbial
8

Similar Publications

Ethyl acetate is at present exclusively produced from fossil resources. Microbial synthesis of this ester from sugar-rich waste as an alternative is an aerobic process. Ethyl acetate is highly volatile and therefore stripped with the exhaust gas from the bioreactor which enables in situ product recovery.

View Article and Find Full Text PDF

The impact of heat treatment, pH and phytic acid (PA) concentration on the aggregation behavior and digestibility of whey protein isolate (WPI) was investigated. The experimental results indicated that below the isoelectric point of WPI, heat treatment and elevated PA levels significantly increased turbidity and particle size, leading to the aggregation of WPI molecules. No new chemical bonds were formed and the thermodynamic parameters ΔH < 0, ΔS > 0 and ΔG < 0 suggested that the interaction between PA and WPI was primarily a spontaneous electrostatic interaction driven by enthalpy.

View Article and Find Full Text PDF

Effects of high-temperature, short-time pasteurization on milk and whey during commercial whey protein concentrate production.

J Dairy Sci

January 2025

Department of Food Science and Technology, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331; Nutrition Program, School of Nutrition and Public Health, College of Health, Oregon State University, Corvallis, OR 97331. Electronic address:

Article Synopsis
  • The study examines the effects of two pasteurization steps on the protein profile of whey protein concentrate (WPC), which is a common dairy product.
  • It follows U.S. regulations mandating the pasteurization of raw milk to eliminate harmful microorganisms while also potentially altering the proteins in the milk.
  • The research uses various methods, including solubility testing and mass spectrometry, to show that pasteurization reduces soluble whey proteins and key bioactive proteins like lactoferrin, while the impact on protein hydrophobicity is not significant.
View Article and Find Full Text PDF

Invited review: Modeling milk stability.

J Dairy Sci

August 2024

Research School of Chemistry, The Australian National University, Acton, ACT 2601, Australia.

Novel insights into the stability of milk and milk products during storage and processing result from describing caseins near neutral pH as hydrophilic, intrinsically disordered, proteins. Casein solubility is strongly influenced by pH and multivalent ion binding. Solubility is high at a neutral pH or above, but decreases as the casein net charge approaches zero, allowing a condensed casein phase or gel to form, then increases at lower pH.

View Article and Find Full Text PDF

The objective of this study was to evaluate the effects of feeding sugars as a replacement for starch on the ruminal microbiome using a dual-flow continuous culture system. Four periods of 10 days each were conducted with 8 fermenters in a 4 × 4 replicated Latin square design. Treatments included: 1) control with corn-CON, 2) molasses-MOL, 3) untreated condensed whey permeate-CWP, and 4) CWP treated with a caustic agent-TCWP as a partial substitute for corn.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!