General design principles for recognition at noncanonical interfaces of DNA and RNA remain elusive. Triplex hybridization of bifacial peptide nucleic acids (bPNAs) with oligo-T/U DNAs and RNAs is a robust recognition platform that can be used to define structure-function relationships in synthetic triplex formation. To this end, a set of minimal ( < 1 kD) bPNA variants was synthesized to probe the impact of amino acid secondary structural propensity, stereochemistry, and backbone cyclization on hybridization with short, unstructured T-rich DNA and U-rich RNAs. Thermodynamic parameters extracted from optical melting analyses of bPNA variant hybrids indicated that there are two bPNA backbone modifications that significantly improve hybridization: alternating (d, l) configuration in open-chain dipeptides and dipeptide cyclization to diketopiperazine. Further, binding to DNA is preferred over RNA for all bPNA variants. Thymine-uracil substitutions in DNA substrates revealed that the methyl group of thymine accounts for 71% of ΔΔ for open-chain bPNAs but only 40% of ΔΔ for diketopiperazine bPNA, suggesting a greater sensitivity to RNA conformation and more optimized stacking in the cyclic bPNA. Together, these data reveal pressure points for tuning triplex hybridization at the chiral centers of bPNA, backbone conformation, stacking effects at the base triple, and the nucleic acid substrate itself. A structural blueprint for enhancing bPNA targeting of both DNA and RNA substrates includes syndiotactic base presentation (as found in homochiral diketopiperazines and d, l peptides), expansion of base stacking, and further investigation of bPNA backbone preorganization.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9361178 | PMC |
http://dx.doi.org/10.1021/acs.biochem.1c00693 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!