Summary: Patient multi-omics datasets are often characterized by a high dimensionality; however, usually only a small fraction of the features is informative, that is change in their value is directly related to the disease outcome or patient survival. In medical sciences, in addition to a robust feature selection procedure, the ability to discover human-readable patterns in the analyzed data is also desirable. To address this need, we created MAINE-Multi-omics Analysis and Exploration. The unique functionality of MAINE is the ability to discover multidimensional dependencies between the selected multi-omics features and event outcome prediction as well as patient survival probability. Learned patterns are visualized in the form of interpretable decision/survival trees and rules.
Availability And Implementation: MAINE is freely available at maine.ibemag.pl as an online web application.
Supplementary Information: Supplementary data are available at Bioinformatics online.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8896606 | PMC |
http://dx.doi.org/10.1093/bioinformatics/btab862 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!