A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Human-induced arsenic pollution modeling in surface waters - An integrated approach using machine learning algorithms and environmental factors. | LitMetric

In recent years, assessment of sediment contamination by heavy metals, i.e., arsenic, has attracted the interest of scientists worldwide. The present study provides a new methodology to better understand the factors influencing surface water vulnerability to arsenic pollution by two advanced machine learning algorithms including boosted regression trees (BRT) and random forest (RF). Based on the sediment quality guidelines (Effects range low) polluted and non-polluted arsenic sediment samples were defined with concentrations >8 ppm and <8 ppm, respectively. Different conditioning factors such as topographical, lithology, erosion, hydrological, and anthropogenic factors were acquired to model surface waters' vulnerability to arsenic. We trained and validated the models using 70 and 30% of both polluted and non-polluted samples, respectively, and generated surface vulnerability maps. To verify the maps to arsenic pollution, the receiver operating characteristics (ROC) curve was implemented. The results approved the acceptable performance of the RF and BRT algorithms with an area under ROC values of 85% and 75.6%, respectively. Further, the findings showed higher importance of precipitation, slope aspect, distance from residential areas, and slope length in arsenic pollution in the modeling process. Erosion, lithology, and land use maps were introduced as the least important factors. The introduced methodology can be used to define the most vulnerable areas to arsenic pollution in advance and implement proper remediation actions to reduce the damages.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2021.114347DOI Listing

Publication Analysis

Top Keywords

arsenic pollution
8
machine learning
8
learning algorithms
8
human-induced arsenic
4
pollution modeling
4
modeling surface
4
surface waters
4
waters integrated
4
integrated approach
4
approach machine
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!