Recently, hierarchical magnetic enzyme nanoflowers have been found extensive attention for efficient enzyme immobilization due to high surface area, low mass transfer limitations, active site accessibility, promotion of the enzymatic performance, and facile reusing. Herein, we report the purification of the Bacillus collagenase and then synthesis of magnetic cross-linked collagenase-metal hybrid nanoflowers (mcCNFs). The catalytic efficiency (k/K) value of the immobilized collagenase was 2.2 times more than that of the free collagenase. The collagenase activity of mcCNFs enhanced about 2.9 and 4.6 at 85 and 90 °C, respectively, compared to free collagenase. Thermal stability of mcCNFs increased about 31% and 24% after 3 h of incubation at 50 and 60 °C, respectively. After 10 cycles of reusing, the mCNFs collagenase showed 83% of its initial activity. Results showed that the mcCNFs revealed 1.4 times more activity than the free collagenase in 0.16% protein waste. Furthermore, the hydrolysis value of chicken pie protein wastes by the immobilized enzyme obtained 4 times more than the free collagenase after 240 min incubation at 40 °C. Finally, our results showed that the construction of mcCNFs is an efficient method to increase the enzymatic performance and has excessive potential for the hydrolysis of protein wastes in the food industry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2021.112302 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!