In the study, an efficient '1 + 1 > 2' synergistic coupling system driven by visible light consisting of mesoporous g-CN (MCN) and persulfate (PS)was constructed. The free radical transformation, electron transfer and non-covalent interaction between the MCN layer and PS in the system were explored via experiments and DFT calculations. The similarity for the fate of the seven β-lactam antibiotics with typical structures in the oxidation system was studied systematically in depth. First, the consistencies and differences of the seven antibiotics were summarized from three aspects: three-dimensional structures, electron cloud distributions, and the vulnerable sites. Notably, the selective differential degradation of β-lactam antibiotics in the MCN/PS system was speculated to be related with the molecular ionization potential (MIP), as a key index to describe the difficulty of oxidation. The distribution relationship between MIP and the oxidation kinetic constant (K) was explored and showed the following trend: a higher MIP indicates a weaker ability to provide electrons, and this leads to a greater resistance to oxidative degradation. In total, four main oxidation pathways of β-lactam antibiotics were systematically summarized combining HPLC-QTOF-MS and the simplified Fukui function calculation. The toxicity assessment of intermediate products provided by the T.E.S.T software of USEPA also shows a decreasing trend in the oxidation process. In the end, the superior practicability and stability of the MCN/PS system was verified by complex environment simulation and cyclic test. This research clarified the selective differential degradation mechanism of β-lactam antibiotics and provided a possible idea for the effective removal of refractory organic pollutants in water.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2021.128111DOI Listing

Publication Analysis

Top Keywords

β-lactam antibiotics
20
selective differential
12
mesoporous g-cn
8
differential degradation
8
mcn/ps system
8
oxidation
6
antibiotics
6
β-lactam
5
system
5
origins selective
4

Similar Publications

Utilizing Targeted Next-Generation Sequencing for Rapid, Accurate, and Cost-Effective Pathogen Detection in Lower Respiratory Tract Infections.

Infect Drug Resist

January 2025

Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.

Objective: To evaluate the diagnostic performance and clinical impact of targeted next-generation sequencing (tNGS) in patients with suspected lower respiratory tract infections.

Methods: Following propensity score matching, we compared the diagnostic performances of tNGS and metagenomic next-generation sequencing (mNGS). Furthermore, the diagnostic performance of tNGS was compared with that of culture, and its clinical impact was assessed.

View Article and Find Full Text PDF

The "best practices for farming" successfully contributed to decrease the antibiotic resistance gene abundances within dairy farms.

Front Vet Sci

January 2025

Laboratory of Microbial Ecology and Genomics, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy.

Introduction: Farms are significant hotspots for the dissemination of antibiotic-resistant bacteria and genes (ARGs) into the environment and directly to humans. The prevalence of ARGs on farms underscores the need for effective strategies to reduce their spread. This study aimed to evaluate the impact of a guideline on "best practices for farming" aimed at reducing the dissemination of antibiotic resistance.

View Article and Find Full Text PDF

Background: The issue of veterinary pharmaceutical expiration is a significant concern in animal health facilities globally. The existence of veterinary pharmaceutical expiration can be mainly associated with inadequate inventory control, store management, and a lack of effective pharmaceutical regulatory policies and guidelines. Hence, the study aimed to evaluate expired veterinary pharmaceuticals' scope, economic impact, and contributing factors.

View Article and Find Full Text PDF

Background: Antimicrobial resistance (AMR) is caused by the use and misuse of antibiotics. AMR is a global health concern, to which penicillin allergy (penA) labels appear to contribute. Patients who have penA labels are treated with non-penicillin antibiotics and receive more antibiotics when compared with patients without penA.

View Article and Find Full Text PDF

From a One Health perspective, dogs and cats have begun to be recognized as important reservoirs for clinically significant multidrug-resistant bacterial pathogens. In this study, we investigated the occurrence and genomic features of ESβL producing Enterobacterales isolated from dogs, in the province of Imbabura, Ecuador. We identified four isolates expressing ESβLs from healthy and diseased animals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!