Rupture and stretching of spinal roots are common incidents that take place in high-energy accidents. The proximal axotomy of motoneurons by crushing of ventral roots is directly related to the degeneration of half of the lesioned population within the first two weeks. Moreover, only a small percentage of surviving motoneurons can successfully achieve regeneration after such a proximal lesion, and new treatments are necessary to improve this scenario. In this sense, mesenchymal stem cells (MSC) are of great interest once they secrete a broad spectrum of bioactive molecules that are immunomodulatory and can restore the environment after a lesion. The present work aimed at studying the effects of human mesenchymal stem cells (hMSC) therapy after ventral root crush (VRC) in mice. We evaluated motoneuron survival, glial reaction, and synapse preservation at the ventral horn. For this purpose, C57BL/6 J were submitted to a crush procedure of L4 to L6 ventral roots and treated with a single intravenous injection of adipose-derived hMSC. Evaluation of the results was carried out at 7, 14, and 28 days after injury. Analysis of motoneuron survival and astrogliosis showed that hMSC treatment resulted in higher motoneuron preservation (motoneuron survival ipsi/contralateral ratio: VRC group = 53%, VRC + hMSC group = 66%; p < 0.01), combined with reduction of astrogliosis (ipsi/contralateral GFAP immunolabeling: VRC group = 470%, VRC + hMSC group = 250%; p < 0.001). The morphological classification and Sholl analysis of microglial activation revealed that hMSC treatment reduced type V and increased type II profiles, indicating an enhancement of surveying over activated microglial cells. The glial reactivity modulation directly influenced synaptic inputs in apposition to axotomized motoneurons. In the hMSC-treated group, synaptic maintenance was increased (ipsi/contralateral synaptophysin immunolabeling: VRC group = 53%, VRC + hMSC group = 64%; p < 0.05). Overall, the present data show that intravenous injection of hMSC has neuroprotective and anti-inflammatory effects, decreasing reactive astrogliosis, and microglial reaction. Also, such cell therapy results in motoneuron preservation, combined with significant maintenance of spinal cord circuits, in particular those related to the ventral horn.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mcn.2021.103694DOI Listing

Publication Analysis

Top Keywords

mesenchymal stem
12
stem cells
12
motoneuron survival
12
human mesenchymal
8
cells hmsc
8
ventral root
8
root crush
8
ventral roots
8
ventral
5
neuroprotection gliosis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!