Polymyxins remain important last-line antibiotics against multidrug-resistant Gram-negative bacteria. Unfortunately, polymyxin resistance is emerging and the mobile polymyxin resistance gene, mcr, is contributing to the wide dissemination of polymyxin resistance, especially among Escherichia coli, with mcr-1 being the most commonly found variant. The objective of this study was to provide mechanistic insights into concentration-dependent transcriptomic responses of mcr-harbouring E. coli following polymyxin treatment. An mcr-1-carrying clinical isolate of E. coli (LH30) was treated with polymyxin B at 2 and 8 mg/L. Bacterial cultures were collected before and 1 h following treatment for viable counting and transcriptomic analysis. Growth of E. coli LH30 was unaffected by 2 mg/L polymyxin B, whereas killing of approximately 2 log colony-forming units/mL occurred with 8 mg/L at 1 h. All four phosphoethanolamine (pEtN) transferase genes (mcr-1, eptA, eptB and eptC) were upregulated (fold change 2.4-4.0) by 8 mg/L polymyxin B, indicating that pEtN modifications were the preferred polymyxin resistance mechanism. The higher polymyxin B concentration also affected the expression of genes involved in fatty acid, lipopolysaccharide, lipid A, phospholipid biosynthesis, iron homeostasis and oxidative stress pathways. This transcriptomic analysis revealed that cell envelope remodelling, pEtN modification, iron acquisition and oxidative stress protective mechanisms play a key role in the survival of mcr-carrying E. coli treated with polymyxin. These findings provide new mechanistic information at the gene expression level to counter polymyxin resistance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijantimicag.2021.106505 | DOI Listing |
NPJ Biofilms Microbiomes
January 2025
Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.
Chronic infections represent a significant global health and economic challenge. Biofilms, which are bacterial communities encased in an extracellular polysaccharide matrix, contribute to approximately 80% of these infections. In particular, pathogens such as Pseudomonas aeruginosa and Staphylococcus aureus are frequently co-isolated from the sputum of patients with cystic fibrosis and are commonly found in chronic wound infections.
View Article and Find Full Text PDFMicroorganisms
December 2024
Korea Food Research Institute, Wanju 55365, Republic of Korea.
Acid adaptation in can induce antimicrobial resistance (AMR), posing challenges to global public health. We investigated the effects of acid adaptation on antimicrobial susceptibility, gene expression, zeta potential, and the outer membrane (OM) properties of NCCP 13719. The acid-adapted (AA) strain exhibited increased resistance to multiple antimicrobials, with minimum inhibitory concentrations for colistin and polymyxin B increasing eight- and two-fold, respectively.
View Article and Find Full Text PDFPathogens
November 2024
Smart Animal Bio Institute, Dankook University, Cheonan 31116, Republic of Korea.
The emergence of antibiotic-resistant () is a pressing threat in clinical settings. Colistin is currently a widely used treatment for multidrug-resistant , serving as the last line of defense. However, reports of colistin-resistant strains of have emerged, underscoring the urgent need to develop alternative medications to combat these serious pathogens.
View Article and Find Full Text PDFMedicina (Kaunas)
December 2024
Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo 12613, Egypt.
A dangerous infection contracted in hospitals, ventilator-associated pneumonia is frequently caused by bacteria that are resistant to several drugs. It is one of the main reasons why patients in intensive care units become ill or die. This research aimed to determine the most effective empirical therapy of antibiotics for better ventilator-associated pneumonia control and to improve patient outcomes by using the minimal inhibitory concentration method and the Ameri-Ziaei double antibiotic synergism test and by observing the clinical responses to both single and combination therapies.
View Article and Find Full Text PDFAntibiotics (Basel)
December 2024
Department of Clinical and Administrative Sciences, California Northstate University College of Pharmacy, Elk Grove, CA 95757, USA.
The feasibility of repurposing selective serotonin reuptake inhibitors as adjunctive antibacterial agents is an area of current investigation. We sought to evaluate if fluoxetine will achieve synergistic killing with relevant antibacterial drugs against skin and soft tissue pathogens and multidrug-resistant pathogens. : The MIC of fluoxetine was determined using broth microdilution for a diverse isolate collection of 21 organisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!