Lignocellulosic biomass-derived fuels, chemicals, and materials are promising sustainable solutions to replace the current petroleum-based production. The direct microbial conversion of thermos-chemically pretreated lignocellulosic biomass is hampered by the presence of highly toxic chemical compounds. Also, thermo-catalytic upgrading of lignocellulosic biomass generates wastewater that contains heterogeneous toxic chemicals, a mixture of unutilized carbon. Metabolic engineering efforts have primarily focused on the conversion of carbohydrates in lignocellulose biomass; substantial opportunities exist to harness value from toxic lignocellulose-derived toxic compounds. This article presents the comprehensive metabolic routes and tolerance mechanisms to develop robust synthetic microbial cell factories to valorize the highly toxic compounds to advanced-platform chemicals. The obtained platform chemicals can be used to manufacture high-value biopolymers and biomaterials via a hybrid biochemical approach for replacing petroleum-based incumbents. The proposed strategy enables a sustainable bio-based materials economy by microbial biofunneling of lignocellulosic biomass-derived toxic molecules, an untapped biogenic carbon.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2021.126614DOI Listing

Publication Analysis

Top Keywords

lignocellulosic biomass
12
lignocellulosic biomass-derived
8
highly toxic
8
toxic compounds
8
toxic
6
lignocellulosic
5
trends valorization
4
valorization highly-toxic
4
highly-toxic lignocellulosic
4
biomass
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!