As one of the most abundant biomass resources, crop stalks are great potential feedstock available for anaerobic digestion (AD) to produce biogas. However, the specific physical properties and complex chemical structures of crop stalks form strong barriers to efficient AD bioconversion. To overcome these problems, many efforts have been made over the past few years. This paper reviewed recent research in the evolving field of anaerobic bioconversion of crop stalks and was focused on three critical aspects affecting AD performance: various pretreatment methods and their effects on the improvement of crop stalk biodegradability, determination of specific AD operation parameters for crop stalks, and development of AD technologies. Finally, recommendations on the future development of crop stalk AD were proposed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2021.126615 | DOI Listing |
Polymers (Basel)
December 2024
Department of Engineering, Pegaso Telematic University, 80143 Naples, Italy.
Lactic acid (LA) is a versatile, optically active compound with applications across the food, cosmetics, pharmaceutical, and chemical industries, largely driven by its role in producing biodegradable polylactic acid (PLA). Due to its abundance, lignocellulosic biomass is a promising and sustainable resource for LA production, although media derived from these matrices are often rich in xylose and contain growth inhibitors. This study investigates LA production using a xylose-rich medium derived from DC stalks treated through steam explosion and enzymatic hydrolysis.
View Article and Find Full Text PDFSci Rep
January 2025
College of Plant Protection, Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Gansu Agricultural University, Lanzhou, 730070, China.
Recently, a new bacterial disease was detected on cucumber stalks. In order to study the pathogenesis of this disease, the pathogenic bacteria were isolated and identified on the basis of morphological and molecular characteristics, and further analyzed for pathogenicity and antagonistic evaluation. Pathogenicity analysis showed that HlJ-3 caused melting decay and cracking in cucumber stems, and the strain reisolated from re-infected cucumber stalks was morphologically identical to HlJ-3 colonies, which is consistent with the Koch's postulates.
View Article and Find Full Text PDFPlant Genome
March 2025
School of Plant, Environmental and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, USA.
Genomic selection can enhance the rate of genetic gain of cane and sucrose yield in sugarcane (Saccharum L.), an important industrial crop worldwide. We assessed the predictive ability (PA) for six traits, such as theoretical recoverable sugar (TRS), number of stalks (NS), stalk weight (SW), cane yield (CY), sugar yield (SY), and fiber content (Fiber) using 20,451 single nucleotide polymorphisms (SNPs) with 22 statistical models based on the genomic estimated breeding values of 567 genotypes within and across five stages of the Louisiana sugarcane breeding program.
View Article and Find Full Text PDFSci Rep
December 2024
College of Grassland Science, Inner Mongolia Agricultural University, Hohhot, 010019, China.
Hydrothermal biochar has demonstrated potential in enhancing crop growth by improving soil properties and microbial activity; however, its effectiveness varies with application rate, with excessive amounts potentially inhibiting plant growth. This study employed a pot experiment approach to compare varying application rates of hydrothermal biochar (ranging from 0 to 50 t/ha) and to analyze its effects on alfalfa biomass, photosynthetic efficiency, soil nutrient content, and microbial community composition. Biochar application increased alfalfa dry weight by 12.
View Article and Find Full Text PDFFront Microbiol
December 2024
State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China.
As one of the three major food crops in the world, maize plays a significant role in alleviating the food crisis. Maize stalk rot can reduce maize yield and mechanical harvesting efficiency. In addition, mycotoxins such as Deoxynivalenol (DON) and Zearalenone (ZEN) produced by maize stalk rot pathogens can also harm livestock and human health.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!