Background And Purpose: Despite extensive efforts and a plethora of suggested targets and pathways, the mechanism via which metformin lowers blood glucose remains obscure. Obstacles that hamper progress in understanding metformin action include unexplained discrepancies between preclinical models and patients.

Procedures: We treated obese male C57BL/6J mice fed high fat diet with metformin provided in the form of a single dose, daily intraperitoneal injections, admixture to drinking water, or continuous infusion via intraperitoneal minipumps.

Results: The results suggest several superimposed components, via which metformin acts on blood glucose. These include (i) marked glucose lowering shortly after dosing, which fades rapidly with the decrease in metformin concentrations in plasma and liver, but could, at least to a major extent, rely on the mechanism also accounting for metformin's therapeutic action in humans; (ii) indirect action via reduced weight gain, which might be responsible for glucose lowering observed in many previous rodent studies; and (iii) deterioration of glucose homeostasis by prolonged treatment that can be unmasked by avoidance of dosing shortly before measuring blood glucose in combination with exclusion of weight-related actions via restricted feeding of the control mice.

Conclusions: Our work raises the question whether elucidation of metformin's anti-diabetic mechanism(s) in rodent experiments may in the past have been hampered by failure to mimic clinical circumstances, as caused by insufficient consideration of pharmacokinetics and multiplicity of involved actions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.metabol.2021.154956DOI Listing

Publication Analysis

Top Keywords

blood glucose
12
metformin action
8
glucose lowering
8
glucose
6
metformin
5
deciphering metformin
4
action
4
action obese
4
obese mice
4
mice critical
4

Similar Publications

Diabetes is a widespread metabolic illness. Mismanagement of diabetes can lead to severe complications that tremendously impact patients' quality of life. The assimilation of nanotechnology in diabetes care holds the potential to revolutionize treatment paradigms, improve patient outcomes, and reduce the economic burden associated with this pervasive disease.

View Article and Find Full Text PDF

PM Exposure Induces Glomerular Hyperfiltration in Mice in a Gender-Dependent Manner.

Toxics

December 2024

Shanxi Key Laboratory of Coal-Based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China.

As one of the most common air pollutants, fine particulate matter (PM) increases the risk of diseases in various systems, including the urinary system. In the present study, we exposed male and female C57BL/6J mice to PM for 8 weeks. Examination of renal function indices, including creatinine (CRE), blood urea nitrogen (BUN), uric acid (UA), and urinary microalbumin, indicated that the kidneys of female mice, not male mice, underwent early renal injury, exhibiting glomerular hyperfiltration.

View Article and Find Full Text PDF

Background: This study aimed to compare the effects of a carbohydrate (CHO) hydrogel with (ALG-CP) or without (ALG-C) branched-chain amino acids, and a CHO-only non-hydrogel (CON), on cycling performance. The hydrogels, encapsulated in an alginate matrix, are designed to control CHO release, potentially optimising absorption, increasing substrate utilisation, and reducing gastrointestinal distress as well as carious lesions.

Methods: In a randomised, double-blinded, crossover trial, 10 trained male cyclists/triathletes completed three experimental days separated by ~6 days.

View Article and Find Full Text PDF

: The prevalence of metabolic syndrome in children has been increasing, raising concerns about early detection and clinical management. Adipokines, which are secreted by adipose tissue, play a critical role in metabolic regulation and inflammation, while gamma-glutamyl transferase (GGT), as a liver enzyme, is linked to oxidative stress and metabolic disorders. The objective was to examine the association of circulating adipokines and GGT with metabolic syndrome risk in school-aged children from Northeast Mexico.

View Article and Find Full Text PDF

: The ketogenic diet (KD) is a dietary model that can impact metabolic health and microbiota and has been widely discussed in recent years. This study aimed to evaluate the effects of a 6-week KD on biochemical parameters, gut microbiota, and fecal short-chain fatty acids (SCFAs) in women with overweight/obesity. : Overall, 15 women aged 26-46 years were included in this study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!