Classically, ecologists have considered that biota becomes more integrated and interdependent with ecosystem development in primary successional environments. However, recent work on soil microbial communities suggests that there may in fact be no change in network integration over successional time series. Here, we performed a test of this principle by identifying network-level topological features of the soil microbial co-occurrence networks in the primary successional foreland environment of the retreating high-Arctic glacier of Midtre Lovénbreen, Svalbard. Soil was sampled at sites along the foreland of inferred ages 10-90 years since deglaciation. DNA was extracted and amplicon sequenced for 16 s rRNA genes for bacteria and ITS1 region for fungi. Despite the chronologically-related soil pH decline and organic C/N accumulation, analysis on network-level topological features showed network integration did not change with inferred chronological ages, whereas network integration declined with decreasing pH and increasing total organic carbon (TOC) - both factors that can be viewed as an indicator of soil development. We also found that bacteria played a greater role in the network structure than fungi, with all keystone species in the microbial co-occurrence network being bacteria species. Both number and relative abundance of the keystone species were significantly higher when soil pH increased or TOC decreased. It appears that in the more extreme and less productive conditions of early primary succession, integration between members of soil biota into consortia may play a greater role in niche adaptation and survival. Our finding also emphasizes that ecosystem development is not simply a product of time but is influenced by locally heterogeneous factors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2021.152565 | DOI Listing |
Environ Geochem Health
January 2025
School of Resources and Environment, Yili Normal University, Yining, 835000, China.
Soil microplastics (MPs) pollution has garnered considerable attention in recent years. The use of biodegradable plastics for mulching has led to significant quantities of plastic entering agro-ecosystems. However, the effects of biodegradable polylactic acid (PLA) plastics on meadow soils remain underexplored.
View Article and Find Full Text PDFFEMS Microbiol Ecol
January 2025
Department of Forest Sciences, University of Helsinki, PO Box 27, 00014 Helsinki, Finland.
J Environ Qual
January 2025
Agricultural and Ecological Research Unit, Indian Statistical Institute, Giridih, Jharkhand, India.
New Phytol
January 2025
Department of Biology, The University of New Mexico, Castetter Hall, 219 Yale Blvd NE, Albuquerque, NM, 87131-0001, USA.
Biodegradation
January 2025
Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, Tamilnadu, 608502, India.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!