The countries of the Greater Mekong subregion-Myanmar, Thailand, Laos, Cambodia, and Vietnam-have set a target of eliminating all Plasmodium falciparum malaria by 2025. Generous funding has been provided, principally by The Global Fund to Fight AIDS, Tuberculosis, and Malaria, to achieve this objective and thereby prevent the spread of artemisinin-resistant Plasmodium falciparum to India and Africa. As the remaining time to reach agreed targets is limited and future external funding is uncertain, it is important to be realistic about the future and spend what remaining funding is left, wisely. New, labour intensive, vertical approaches to malaria elimination (such as the 1-3-7 approach) should not be promoted as these are unproven, likely to be ineffective, costly, and unlikely to be sustainable in the most remote areas where malaria prevalence is highest. Instead, the focus should be on reducing the malaria burden more rapidly in the remaining localised high transmission foci with proven effective interventions, including mass drug administration. Well supported community-based health workers are the key operatives in controlling malaria, but their remit should be broadened to sustain the uptake of their services as malaria declines. This strategy is a sustainable evolution, which will improve rural health care while ensuring progress towards malaria elimination.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/S1473-3099(21)00256-5 | DOI Listing |
PLOS Glob Public Health
January 2025
Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America.
Universal coverage is defined by the World Health Organization as 1 long-lasting insecticidal net (LLIN) for 2 people in a household. While Uganda has been a leader in the distribution of LLINs, there are concerns regarding the longevity of LLINs. The main aim of this study was to address the LLIN coverage gap that emerges in the period after mass distribution campaigns through the implementation of a novel LLIN distribution strategy utilizing the existing community healthcare worker (CHW) infrastructure.
View Article and Find Full Text PDFPLoS One
January 2025
Université Paris Cité, IRD, MERIT, F-75006, Paris, France.
Introduction: Recently, efforts to eliminate malaria have shifted focus from symptomatic cases alone to include asymptomatic carriers, who are now recognized as significant contributors to the disease's transmission and control. This study examines the relationship between asymptomatic malaria infection and hemoglobin levels in Benin.
Methods: A cohort in Benin was enrolled and categorized into three age groups (under 5 years, 5-15 years, and over 15 years) for follow-up from August to November 2021.
PLoS One
January 2025
School of Health Sciences, Universiti Sains Malaysia, Kota Bharu, Kelantan, Malaysia.
Objective: For more than a century, developing novel and effective vaccines against malaria and Tuberculosis (TB) infections has been a challenge. This review sought to investigate the reasons for the slow progress of malaria and TB vaccine candidates in sub-Saharan African clinical trials.
Methods: The systematic review protocol was registered on PROSPERO on July 26, 2023 (CRD42023445166).
J Biomed Mater Res B Appl Biomater
February 2025
Zoology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt.
Schistosomiasis, caused by Schistosoma worms, is a major neglected tropical disease in Africa, this disease is ranked as second after malaria. Nanotechnology is important for treating schistosomiasis while minimizing chemotherapy side effects. The current investigate aimed to assess the effectiveness of biosynthesized zinc oxide nanoparticles (ZnO NPs), which were used for the first time in an attempt to find alternative treatment for schistosomiasis and synthesized by Origanum majorana, and to compare them with praziquantel (PZQ), the only chemical treatment approved by the World Health Organization.
View Article and Find Full Text PDFJ Microsc
January 2025
Laboratory of Apicomplexan Biology, Institut Pasteur Montevideo, Montevideo, Uruguay.
Apicomplexans, a large phylum of protozoan intracellular parasites, well known for their ability to invade and proliferate within host cells, cause diseases with major health and economic impacts worldwide. These parasites are responsible for conditions such as malaria, cryptosporidiosis, and toxoplasmosis, which affect humans and other animals. Apicomplexans exhibit complex life cycles, marked by diverse modes of cell division, which are closely associated with their pathogenesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!