Kernel extreme learning machine (KELM) has been widely used in the fields of classification and identification since it was proposed. As the parameters in the KELM model have a crucial impact on performance, they must be optimized before the model can be applied in practical areas. In this study, to improve optimization performance, a new parameter optimization strategy is proposed, based on a disperse foraging sine cosine algorithm (DFSCA), which is utilized to force some portions of search agents to explore other potential regions. Meanwhile, DFSCA is integrated into KELM to establish a new machine learning model named DFSCA-KELM. Firstly, using the CEC2017 benchmark suite, the exploration and exploitation capabilities of DFSCA were demonstrated. Secondly, evaluation of the model DFSCA-KELM on six medical datasets extracted from the UCI machine learning repository for medical diagnosis proved the effectiveness of the proposed model. At last, the model DFSCA-KELM was applied to solve two real medical cases, and the results indicate that DFSCA-KELM can also deal with practical medical problems effectively. Taken together, these results show that the proposed technique can be regarded as a promising tool for medical diagnosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compbiomed.2021.105137 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!