Optimizing the hydraulic performance of free water surface constructed wetlands (FWS CWs) is of great economic and ecological value. However, there is a complex nonlinear relationship between the hydraulic performance and design parameters of FWS CWs. In this study, an artificial neural network (ANN) was applied to simulate and predict the hydraulic performance corresponding to different combinations of design parameters, and orthogonal design L (3) was used to determine the optimal combination of the important hyperparameters of the ANN. Based on the convenient scenario prediction ability of ANN, sensitivity analysis of different design parameters was carried out by the control variate method and full factor experiment. The results showed that the combination of 3 hidden layers, 15 neural nodes in each hidden layer, 0.001 learning rate, and 8 batch sizes was optimal for the established ANN model, achieving a coefficient of determination of 0.828 in the validation set and a satisfactory prediction effect in the test set. The narrow feature distribution interval in the training set restricted the generalization ability of the ANN model to some extent. Of the four continuous design parameters, the water depth and aspect ratio had an important influence on the effective volume ratio. The layout of inlet and outlet was the most influential design parameter, as confirmed by the full factor experiment of five factors and four levels. The established ANN allowed real-time implementation in an extended scenario at a low cost. This study suggests that the ANN can simultaneously project complex and uncertain effects of several design parameters on wetland performance. In future research, acquiring further comprehensive, impartial, and unbiased experimental datasets is necessary to establish a more robust and generalizing ANN model that can guide the optimal design of FWS CWs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2021.114334 | DOI Listing |
Nanotechnology
January 2025
Radiophysics, Tomsk State University, Lenin, 36, Tomsk, Tomsk region, 634050, RUSSIAN FEDERATION.
Structural and photoelectric properties of p-i-n photodiodes based on GeSiSn/Si multiple quantum dots both on Si and silicon-on-insulator (SOI) substrates were investigated. Elastic strained state of grown films was demonstrated by x-ray diffractometry. Annealing of p-i-n structures before the mesa fabrication can improve the ideality factor of current-voltage characteristics.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
State Key Laboratory of Advanced Drug Delivery and Release Systems, School of Pharmaceutical Sciences, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, P. R. China.
Mitochondrial quality control is paramount for cellular development, with mitochondrial electron flow (Mito-EF) playing a central role in maintaining mitochondrial homeostasis. However, unlike visible protein entities, which can be monitored through chemical biotechnology, regulating mitochondrial quality control by invisible entities such as Mito-EF has remained elusive. Here, a Mito-EF tracker (Mito-EFT) with a four-pronged probe design is presented to elucidate the dynamic mechanisms of Mito-EF's involvement in mitochondrial quality control.
View Article and Find Full Text PDFPLoS One
January 2025
Faculty of Philosophy, Department of Psychology, University of Novi Sad, Novi Sad, Serbia.
Virtual reality (VR) provides a unique opportunity to simulate various environments, enabling the observation of human behavior in a manner that closely resembles real-world scenarios. This study aimed to explore the effects of anticipating reward or punishment, personality traits, and physiological arousal on risky decision-making within a VR context. A custom VR game was developed to simulate real-life experiences.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Department of Chemistry and Biochemistry, National Chung Cheng University, 621301, Chia-Yi, Taiwan.
A fluorescent aptasensor was developed based on target-induced hairpin conformation switch coupled with nicking enzyme-assisted signal amplification (NESA) to detect the oligomeric form of ß-amyolid peptide (AβO) in cerebrospinal fluid. The hairpin DNA probe (HP) was specifically designed to recognize AβO. When AβO is present in the sensing system, it induces an HP conformational switch and triggers the NESA reaction.
View Article and Find Full Text PDFTraffic Inj Prev
January 2025
School of Intelligent Transportation and Engineering, Guangzhou Maritime University, Guangzhou, China.
Objective: The objective of this study was to assess drivers' visual search patterns and cognitive load during driving in curved tunnels. Specifically, we aimed to investigate how different curved tunnel geometries (tunnel radii, turning directions) and zones (entrance, middle, exit) influence drivers' saccadic eye movements. This understanding can inform the development of safer tunnel designs and driving guidelines.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!