Elimination of negative feedback in TLR signalling allows rapid and hypersensitive detection of microbial contaminants.

Sci Rep

Lehrstuhl für Zellbiologie, Fachbereich Biologie, Maildrop 621, Universität Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany.

Published: December 2021

The exquisite specificity of Toll-like receptors (TLRs) to sense microbial molecular signatures is used as a powerful tool to pinpoint microbial contaminants. Various cellular systems, from native human blood cells to transfected cell lines exploit TLRs as pyrogen detectors in biological preparations. However, slow cellular responses and limited sensitivity have hampered the replacement of animal-based tests such as the rabbit pyrogen test or lipopolysaccharide detection by Limulus amoebocyte lysate. Here, we report a novel human cell-based approach to boost detection of microbial contaminants by TLR-expressing cells. By genetic and pharmacologic elimination of negative control circuits, TLR-initiated cellular responses to bacterial molecular patterns were accelerated and significantly elevated. Combining depletion of protein phosphatase PP2ACA and pharmacological inhibition of PP1 in the optimized reporter cells further enhanced the sensitivity to allow detection of bacterial lipoprotein at 30 picogram/ml. Such next-generation cellular monitoring is poised to replace animal-based testing for microbial contaminants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8709846PMC
http://dx.doi.org/10.1038/s41598-021-03618-9DOI Listing

Publication Analysis

Top Keywords

microbial contaminants
16
elimination negative
8
detection microbial
8
cellular responses
8
microbial
5
negative feedback
4
feedback tlr
4
tlr signalling
4
signalling allows
4
allows rapid
4

Similar Publications

Microbial assisted alleviation of nickel toxicity in plants: A review.

Ecotoxicol Environ Saf

January 2025

Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp 23456, Sweden. Electronic address:

Nickel (Ni) is required in trace amounts (less than 500 µg kg) in plants to regulate metabolic processes, the immune system, and to act as an enzymatic catalytic cofactor. Conversely, when nickel is present in high concentration, it is considered as a toxic substance. Excessive human nickel exposure occurs through ingestion, inhalation, and skin contact, ultimately leading to respiratory, cardiovascular, and chronic kidney diseases.

View Article and Find Full Text PDF

Singlet oxygen presenting a higher detoxification potential on enrofloxacin than sulfate and hydroxyl radicals.

J Hazard Mater

January 2025

School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China. Electronic address:

With the aid of radical and non-radical reactive species (RS), advanced oxidation processes can efficiently degrade emerging organic contaminants including antibiotics but may generate toxic transformation products (TPs). However, the detoxification capacity of popular RS has not been well elucidated. This study compared the detoxification of enrofloxacin (ENR) with three RS-dominated systems: O, SO+OH, OH.

View Article and Find Full Text PDF

Glycine betaine enhances heavy metal phytoremediation via rhizosphere modulation and nitrogen metabolism in king grass-Serratia marcescens strain S27 symbiosis.

J Hazard Mater

January 2025

School of Environmental Science and Engineering, Hainan University, Haikou 570228, China; Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China. Electronic address:

Microbe-Assisted Phytoremediation (MAP) is an eco-friendly method for remediating soil contaminated with heavy metals such as cadmium (Cd) and chromium (Cr). This study demonstrates the potential of a king grass-Serratia marcescens strain S27 (KS) co-symbiotic system to enhance heavy metal remediation. The KS symbiosis increased the biomass of king grass by 48 % and enhanced the accumulation of Cd and Cr in the whole plant by 2.

View Article and Find Full Text PDF

Recent progresses and perspectives of polyethylene biodegradation by bacteria and fungi: A review.

J Contam Hydrol

January 2025

College of Resources and Environment, Yangtze University, Hubei, Wuhan 430100, China. Electronic address:

Plastics pollution has become a serious threat to the people and environment due to the mass production, unreasonable disposal and continuous pollution. Polyethylene (PE), one of the most utilized plastics all over the world, is considered as a highly recalcitrant environmental destruction problem on account of strong hydrophobicity and high molecular weight. Therefore, it is urgently necessary to seek economical and efficient treatment and disposal methods for PE.

View Article and Find Full Text PDF

A novel immobilized bacteria consortium enhanced remediation efficiency of PAHs in soil: Insights into key removal mechanism and main driving factor.

J Hazard Mater

January 2025

State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China. Electronic address:

The remediation of sites co-contaminated with polycyclic aromatic hydrocarbons (PAHs) and heavy metals (HMs) poses challenges for efficient and ecofriendly restoration methods. In this study, three strains (Pseudomonas sp. PDC-1, Rhodococcus sp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!