The discovery, only a decade ago, of the genome editing power of clustered regularly interspaced short palindromic repeats (CRISPR)-associated nucleases is already reinventing the therapeutic process, from how new drugs are discovered to novel ways to treat diseases. CRISPR-based screens can aid therapeutic development by quickly identifying a drug's mechanism of action and escape mutants. Additionally, CRISPR-Cas has advanced emerging ex vivo therapeutics, such as cell replacement therapies. However, Cas9 is limited as an in vivo therapeutic due to ineffective delivery, unwanted immune responses, off-target effects, unpredictable repair outcomes, and cellular stress. To address these limitations, controls that inhibit or degrade Cas9, biomolecule-Cas9 conjugates, and base editors have been developed. Herein, we discuss CRISPR-Cas systems that advance both conventional and emerging therapeutics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9726229 | PMC |
http://dx.doi.org/10.1016/j.tips.2021.10.012 | DOI Listing |
Epigenetics Chromatin
January 2025
Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia.
Despite significant advances in HIV treatment, a definitive cure remains elusive. The first-in-human clinical trial of Excision BioTherapeutics' CRISPR-based HIV cure, EBT-101, demonstrated safety but failed to prevent viral rebound. These outcomes may result from the interplay of several factors.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Columbia University, New York, NY, USA.
Background: The connection between inflammasomes and Alzheimer's disease (AD) has garnered significant interest, with emerging evidence suggesting genetic associations and functional implications. Notably, studies have reported the upregulation of inflammasome components like NLRP1, NLRP3, and Caspase-1 in AD patients. Moreover, genetic polymorphisms in inflammasome-related genes are linked to increased AD risk.
View Article and Find Full Text PDFSci Rep
January 2025
CrisprBits Private Limited, 3rd Floor, Plot No.-3, F-301, Ashish Complex, LSC, New Rajdhani Enclave, East Delhi, Delhi, 110092, India.
The rapid and early detection of infections and antibiotic resistance markers is a critical challenge in healthcare. Currently, most commercial diagnostic tools for analyzing antimicrobial resistance patterns of pathogens require elaborate culture-based testing. Our study aims to develop a rapid, accurate molecular detection system that can be used directly from culture, thereby introducing molecular testing in conjunction with culture tests to reduce turnaround time and guide therapy.
View Article and Find Full Text PDFCell Biosci
December 2024
Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy.
N-myc downstream-regulated gene 1 (NDRG1) is a member of the NDRG family of intracellular proteins and plays a central role in a wide range of biological processes including stress response, differentiation, and metabolism. The overexpression of NDRG1 is an indicator of poor prognosis in various types of cancer. Here, we found that NDRG1 is an independent prognostic marker of poor outcome in breast cancer (BC).
View Article and Find Full Text PDFEnviron Int
December 2024
Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China. Electronic address:
Aristolochic Acid I (AAI) is widely present in traditional Chinese medicines derived from the Aristolochia genus and is known to cause significant damage to renal tubular epithelial cells. Genome-wide screening has proven to be a powerful tool in identifying critical genes associated with the toxicity of exogenous substances. To identify undiscovered key genes involved in AAI-induced renal toxicity, a genome-wide CRISPR library screen was conducted in the human kidney-2 (HK-2) cell line.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!