The main aim of this computational modelling study was to test the validity of the hypothesis that sensitivity to the polarity of cochlear implant stimulation can be interpreted as a measure of neural health. For this purpose, the effects of stimulus polarity on neural excitation patterns were investigated in a volume conduction model of the implanted human cochlea, which was coupled with a deterministic active nerve fibre model based on characteristics of human auditory neurons. The nerve fibres were modelled in three stages of neural degeneration: intact, with shortened peripheral terminal nodes and with complete loss of the peripheral processes. The model simulated neural responses to monophasic, biphasic, triphasic and pseudomonophasic pulses of both polarities. Polarity sensitivity was quantified as the so-called polarity effect (PE), which is defined as the dB difference between cathodic and anodic thresholds. Results showed that anodic pulses mostly excited the auditory neurons in their central axons, while cathodic stimuli generally excited neurons in their peripheral processes or near their cell bodies. As a consequence, cathodic thresholds were more affected by neural degeneration than anodic thresholds. Neural degeneration did not have a consistent effect on the modelled PE values, though there were notable effects of electrode contact insertion angle and distance from the modiolus. Furthermore, determining PE values using charge-balanced multiphasic pulses as approximations of monophasic stimuli produced different results than those obtained with true monophasic pulses, at a degree that depended on the specific pulse shape; in general, pulses with lower secondary phase amplitudes showed polarity sensitivities closer to those obtained with true monophasic pulses. The main conclusion of this study is that polarity sensitivity is not a reliable indicator of neural health; neural degeneration affects simulated polarity sensitivity, but its effect is not consistently related to the degree of degeneration. Polarity sensitivity is not simply a product of the state of the neurons, but also depends on spatial factors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.heares.2021.108413 | DOI Listing |
Turnover in species composition through time is a dominant form of biodiversity change, which has profound effects on the functioning of ecological communities. Turnover rates differ markedly among communities, but the drivers of this variation across taxa and realms remain unknown. Here we analyse 42,225 time series of species composition from marine, terrestrial and freshwater assemblages, and show that temporal rates of turnover were consistently faster in locations that experienced faster temperature change, including both warming and cooling.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Department of Geosciences and Geography, University of Helsinki, P.O. Box 64, Helsinki, FI-00014, Finland; State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, China.
The reliability of land surface phenology (LSP) derived from satellite remote sensing is crucial for obtaining accurate estimates of the phenological response of vegetation to future climate change in urban ecosystems. Differences in phenological definition and extraction methodology using remote sensing can generate systemic errors in estimating the phenological temperature sensitivity to predict the biological response of vegetation. Here, we evaluated the start of the season (SOS), the end of the season (EOS), and the growing season length (GSL) between the Terra and Aqua combined Moderate Resolution Imaging Spectroradiometer (MODIS) Land Cover Dynamics (MCD12Q2) and the Suomi National Polar-Orbiting Partnership NASA Visible Infrared Imaging Radiometer Suite (VIIRS) Land Cover Dynamics (VNP22Q2) over 1470 urban clusters worldwide.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, Hebei, China.
Polarity-sensitive probes (PAS) were synthesized through the attachment of azetidine and sulfonyl substituents to the pyrene fluorescent core. The emission peaks and fluorescence lifetimes of these PAS probes exhibit high sensitivity to polarity, enabling the visualization of microenvironmental characteristics and dynamics across multiple organelles.
View Article and Find Full Text PDFHardwareX
March 2025
LIGHT Community, Physics Department, Imperial College London SW7 2AZ, UK.
We recently demonstrated polarisation differential phase contrast microscopy () as a robust, low-cost single-shot implementation of (semi)quantitative phase imaging based on differential phase microscopy. utilises a polarisation-sensitive camera to simultaneously acquire four obliquely transilluminated images from which phase images mapping spatial variation of optical path difference can be calculated. microscopy can be implemented on existing or bespoke microscopes and can utilise radiation at a wide range of visible to near infrared wavelengths and so is straightforward to integrate with fluorescence microscopy.
View Article and Find Full Text PDFWe investigate the ultrafast electron correlation effects during non-sequential double ionization (NSDI) of argon subjected to a combined femtosecond field composed of counter-rotating two-color circularly polarized (TCCP) pulse laser using a 3D classical ensemble model (CEM). Our simulation results reveal that manipulation of the carrier-envelope phase (CEP) of the external driving field modulates the dynamical behavior of the two electrons, resulting in a notable sensitivity of their momentum distribution to the relative phase of two components of the counter-rotating TCCP field. Through inversion analysis, we uncover the capability to direct electrons toward a single direction, thereby facilitating focused ion-electron collisions on the attosecond timescale.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!