Astrocytes Render Memory Flexible by Releasing D-Serine and Regulating NMDA Receptor Tone in the Hippocampus.

Biol Psychiatry

Department of Neuroscience, Division of BioMedical Science & Technology, Korea Institute of Science and Technology School, Korea University of Science and Technology, Seoul, South Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea; IBS School, Korea University of Science and Technology, Daejeon, South Korea. Electronic address:

Published: April 2022

Background: NMDA receptor (NMDAR) hypofunction has been implicated in several psychiatric disorders with impairment of cognitive flexibility. However, the molecular mechanism of how NMDAR hypofunction with decreased NMDAR tone causes the impairment of cognitive flexibility has been minimally understood. Furthermore, it has been unclear whether hippocampal astrocytes regulate NMDAR tone and cognitive flexibility.

Methods: We employed cell type-specific genetic manipulations, ex vivo electrophysiological recordings, sniffer patch recordings, cutting-edge biosensor for norepinephrine, and behavioral assays to investigate whether astrocytes can regulate NMDAR tone by releasing D-serine and glutamate. Subsequently, we further investigated the role of NMDAR tone in heterosynaptic long-term depression, metaplasticity, and cognitive flexibility.

Results: We found that hippocampal astrocytes regulate NMDAR tone via BEST1-mediated corelease of D-serine and glutamate. Best1 knockout mice exhibited reduced NMDAR tone and impairments of homosynaptic and α adrenergic receptor-dependent heterosynaptic long-term depression, which leads to defects in metaplasticity and cognitive flexibility. These impairments in Best1 knockout mice can be rescued by hippocampal astrocyte-specific BEST1 expression or enhanced NMDAR tone through D-serine supplement. D-serine injection in Best1 knockout mice during initial learning rescues subsequent reversal learning.

Conclusions: These findings indicate that NMDAR tone during initial learning is important for subsequent learning, and hippocampal NMDAR tone regulated by astrocytic BEST1 is critical for heterosynaptic long-term depression, metaplasticity, and cognitive flexibility.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopsych.2021.10.012DOI Listing

Publication Analysis

Top Keywords

nmdar tone
36
cognitive flexibility
16
astrocytes regulate
12
regulate nmdar
12
heterosynaptic long-term
12
long-term depression
12
metaplasticity cognitive
12
best1 knockout
12
knockout mice
12
nmdar
11

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!